
 

 

 

    LPCXpresso Experiment Kit - User’s Guide 

Copyright 2013 © Embedded Artists AB 

 

 EA-USG-1206 Rev A 

 

 

 

 

 

LPCXpresso Experiment Kit 
User’s Guide 

 

 

 

 

  

 

Learn embedded programming with NXP’s LPC1000 
family of Cortex-M0/M3 microcontrollers! 



LPCXpresso Experiment Kit - User’s Guide Page 2  

 

 

Copyright 2013 © Embedded Artists AB 

 

Embedded Artists AB 
Davidshallsgatan 16 
211 45 Malmö 
Sweden 

info@EmbeddedArtists.com 
http://www.EmbeddedArtists.com 

 

Copyright 2013 © Embedded Artists AB. All rights reserved. 

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or 
translated into any language or computer language, in any form or by any means, electronic, 
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of 
Embedded Artists AB. 

 

Disclaimer 

Embedded Artists AB makes no representation or warranties with respect to the contents hereof and 
specifically disclaim any implied warranties or merchantability or fitness for any particular purpose. 
Information in this publication is subject to change without notice and does not represent a 
commitment on the part of Embedded Artists AB. 

 

Feedback 

We appreciate any feedback you may have for improvements on this document. Please send your 
comments to support@EmbeddedArtists.com. 

 

Trademarks 

All brand and product names mentioned herein are trademarks, services marks, registered 
trademarks, or registered service marks of their respective owners and should be treated as such. 

mailto:info@EmbeddedArtists.com
http://www.embeddedartists.com/
mailto:support@EmbeddedArtists.com


LPCXpresso Experiment Kit - User’s Guide Page 3  

 

 

Copyright 2013 © Embedded Artists AB 

 

Table of Contents 
1 Document Revision History 7 

2 Introduction 8 

2.1 Features 8 

2.2 ESD Precaution 9 

2.3 General Handling Care 9 

2.4 Code Read Protection 9 

2.5 CE Assessment 9 

2.6 Other Products from Embedded Artists 9 

2.6.1 Design and Production Services 9 

2.6.2 OEM / Evaluation / QuickStart Boards and Kits 10 

3 LPCXpresso Experiment Kit 11 

3.1 Embedded Systems Programming 12 

4 Kit Content 13 

5 Powering Options 25 

6 Soldering 27 

6.1 Component Placement 27 

7 Experiments 29 

7.1 Preparation 29 

7.2 Control a LED 29 

7.2.1 Lab 1a: Control LED 30 

7.2.2 Lab 1b: GPIO and Bit Masking 35 

7.2.3 Lab 1c: Delay Function – LED Flashing 36 

7.2.4 Lab 1d: Morse Code 37 

7.3 Read a Digital Input 38 

7.3.1 Lab 2a: Read Push-button 38 

7.3.2 Lab 2b: GPIO and Bit Masking 41 

7.3.3 Lab 2c: Logic between inputs and output 41 

7.3.4 Lab 2d: Toggling LED 44 

7.3.5 Lab 2e: Sampling of Inputs 44 

7.4 Control Multiple LEDs 46 

7.4.1 Lab 3a: LEDs in Running-One Pattern 46 

7.4.2 Lab 3b: Control of Running-One Pattern 47 

7.4.3 Lab 3c: Rotary Switch Control of Running-One Pattern 48 

7.5 Print Messages 49 

7.5.1 Lab 4a: Semihosting and printf() 49 

7.5.2 Lab 4b: Semihosting Performance Test 51 

7.5.3 Lab 4c: Printing Events 51 

7.5.4 Lab 4d: Reading from the Console 51 



LPCXpresso Experiment Kit - User’s Guide Page 4  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.6 Read an Analog Input 53 

7.6.1 Lab 5a: Read Trimming Potentiometer 53 

7.6.2 Lab 5b: Event Threshold 56 

7.6.3 Lab 5c: Read Light Sensor 56 

7.6.4 Lab 5d: ADC Noise Test 57 

7.7 Pulse Width Modulation 58 

7.7.1 Lab 6a: PWM Control of a LED 58 

7.7.2 Lab 6b: PWM Control of a LED, cont. 1 59 

7.7.3 Lab 6c: PWM Control of a LED, cont. 2 59 

7.7.4 Lab 6d: PWM Control of two LEDs 60 

7.8 Control an RGB-LED 61 

7.8.1 Lab 7a: Test RGB-LED 61 

7.8.2 Lab 7b: Control RGB-LED 62 

7.9 Control a 7-segment Display 63 

7.9.1 Lab 8a: Test 7-segment Display 64 

7.9.2 Lab 8b: Control 7-segment Display 64 

7.9.3 Lab 8c: Control 7-segment Display, cont. 66 

7.9.4 Lab 8d: Control Dual Digit 7-segment Display 66 

7.9.5 Lab 8e: Control 7-segment Display via Shift Register 68 

7.10 Work with a Timer 71 

7.10.1 Lab 9a: Create Exact Delay Function 71 

7.11 PWM via a Timer 72 

7.11.1 Lab 10a: Control RGB-LED 74 

7.11.2 Lab 10b: Buzzer and Melodies 74 

7.11.3 Lab 10c: Control a Servo Motor 75 

7.12 Work with a Serial Bus – SPI 78 

7.12.1 Lab 11a: Access Shift Register 81 

7.12.2 Lab 11b: Control 7-segment Display 82 

7.12.3 Lab 11c: Access SPI E2PROM 82 

7.13 Work with Interrupts 87 

7.13.1 Lab 12a: Generate IRQ via GPIO 89 

7.13.2 Lab 12b: Timer IRQ 90 

7.13.3 Lab 12c: Timer IRQ with Callback 91 

7.13.4 Lab 12d: Nested Interrupts 92 

7.13.5 Lab 12e: Control Dual Digit 7-segment Display 93 

7.14 Work with a Serial Bus – I2C 94 

7.14.1 Lab 13a: Solder Surface Mounted Components 95 

7.14.2 Lab 13b: Read LM75 Temperature Sensor 96 

7.14.3 Lab 13c: Control LEDs via PCA9532 97 

7.15 Work with a Serial Bus – UART 100 

7.15.1 Lab 14a: Transmitting and Receiving via the UART 106 

7.15.2 Lab 14b: Direct printf() to UART 106 

7.15.3 Lab 14c: Interrupt driven UART handling and ring buffers 107 

7.16 Extra: Work with RF-module 112 

7.16.1 Lab 15a: XBee™ RF-Module 113 

7.16.2 Lab 15b: GPS Receiver 117 



LPCXpresso Experiment Kit - User’s Guide Page 5  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.17 Extra: Work with Serial Expansion Connector 123 

7.17.1 Lab 16a: 128x128 OLED Graphical Display 123 

7.18 Extra: Work with USB Device 126 

7.18.1 Lab 17a: USB Device – HID 126 

7.18.2 Lab 17b: USB Device – Mouse HID 127 

7.19 Extra: Work with USB Host 128 

7.19.1 Lab 18a: USB Host 128 

7.20 Extra: Work with Ethernet Interface 129 

7.20.1 Lab 19a: easyWeb Web Server 129 

7.20.2 Lab 19b: lwIP TCP/IP Stack, Web Server and FreeRTOS 130 

7.21 Differences between LPCXpresso LPC111x and LPC1114 in DIL28 133 

8 Projects 135 

8.1 Interface a Color Sensor 135 

8.2 Interface a Real-time Clock (RTC) 135 

8.3 Interface a GPS Module 135 

8.4 Interface an SD/MMC Memory Card 135 

8.5 Interface an Accelerometer and Gyro 135 

8.6 Control a LED Matrix 136 

8.7 Create a Game with Display + Accelerometer or Gyro 136 

8.8 Create General Menu System for a Display 136 

8.9 Retrieve Information from Web Servers 136 

8.10 USB Mouse Emulation 136 

8.11 Registry in E2PROM 137 

8.12 Real-Time Dynamic Data with JAVA Applet 137 

8.13 Multiplayer Game via RF-module 137 

8.14 Home Alarm System 137 

8.15 Polyphonic Audio Generation 138 

8.16 Audio Processing 138 

8.17 Home Automation 138 

8.18 Control a Robot 138 

8.19 RS-485 Network 138 

8.20 Interface an FPGA/CPLD Chip 138 

8.21 Analog Electronic Experiments 138 

9 LPCXpresso IDE – How to get Started 139 

9.1 Importing Projects 139 

9.2 Working with a Project and Compiling 141 

9.3 Debugging a Project and Downloading 142 

9.3.1 Downloading Just Code 146 

9.4 Create own Projects by Copy Existing Project 150 

9.5 Common Problems 151 

9.5.1 Error message: Failed on chip setup 152 



LPCXpresso Experiment Kit - User’s Guide Page 6  

 

 

Copyright 2013 © Embedded Artists AB 

 

10 Further Information 153 



LPCXpresso Experiment Kit - User’s Guide Page 7  

 

 

Copyright 2013 © Embedded Artists AB 

 

1   Document Revision History 
  

Revision Date Description 

PA1 2012-07-16 Work in progress. 

PA2 2013-01-14 Work in progress. 

PA3 2013-01-25 First version to be released. All experiments are still not complete. 

PA4 2013-01-29 Minor corrections/clarifications. 

PA5 2013-02-25 Completed section 7.9 - 7.10. 

PA6 2013-03-19 Completed section 7.11-7.14. Cleanup in variable declarations in 
code fragments. Added instructions about creating driver structured 
source code. 

PA7 2013-04-08 Completed section 7.15. Changed all code fragments to use 
predefined typedefs for variable declaration. Minor corrections. 

PA8 2013-06-13 Completed section 7.16-7.20. Minor corrections/clarifications. 



LPCXpresso Experiment Kit - User’s Guide Page 8  

 

 

Copyright 2013 © Embedded Artists AB 

 

2  Introduction 
Thank you for buying Embedded Artists’ LPCXpresso Experiment Kit designed to work with NXP’s 
ARM Cortex-M0/M3 LPCXpresso target boards. 

This document is a User’s Guide that describes the LPCXpresso Experiment Kit that describes 
hardware as well as software related to the kit. 

2.1  Features 

The kit has been created as a guided tour to learn embedded programming with NXP’s LPC1000 
microcontroller family with Cortex-M0/M3 cores from ARM. The experiments can be performed on a 
breadboard for maximum flexibility and ease of use. It is also possible to solder the components to a 
printed circuit board (pcb) and learn soldering at the same time. 

Components included in the kit are: 

 8x LEDs 

 2x Trimming potentiometers 

 7x push-buttons 

 RGB-LED 

 Light sensor (analog) 

 Temperature sensor (analog) 

 7-segment LED, dual digit 

 E2PROM with SPI interface 

 Temperature sensor with I2C interface (only for pcb mounting) 

 Piezo buzzer 

 Rotary quadrature encoder (only for pcb mounting) 

 Shift register 

 I2C ports expander (PCA9532, only for pcb mounting) 

 USB Host connector (only for pcb mounting) 

 USB Device connector (only for pcb mounting) 

 RJ45 connector for Ethernet (only for pcb mounting) 

 14-pos serial expansion connector, for interface to for example graphical displays 

 3x servo connectors. Note that servos are not included. 

 XBee™ compatible socket (for ZigBee and WiFi modules). Note that RF module is not 
included. 

 LPC1114 in DIL28 package, with 12MHz crystal and SWD connector (only for pcb mounting) 

 Local +3.3V voltage regulator 

 Miscellaneous resistors, capacitors, transistors and connectors  

 Breadboard with cables 

 Naked PCB 



LPCXpresso Experiment Kit - User’s Guide Page 9  

 

 

Copyright 2013 © Embedded Artists AB 

 

2.2  ESD Precaution 

Please note that the LPCXpresso Experiment Kit come without any case/box 
and all components are exposed for finger touches – and therefore extra 
attention must be paid to ESD (electrostatic discharge) precaution.  

Always work with the LPCXpresso Experiment Kit in a place with proper 
ESD protection. 

Avoiding electrostatic discharge is all about having the same electric potential 
and to avoid building up charges between different areas where you work. This 
is easily accomplished by having a conductive surface on your workbench and connecting yourself 
with this surface via a wrist wrap. 

Note that Embedded Artists does not replace boards that have been damaged by ESD. 

2.3  General Handling Care 

Handle the LPCXpresso Experiment Kit and all included components with care. The board is not 
mounted in a protective case/box and is not designed for rough physical handling. Connectors and 
components can wear out after excessive use. The LPCXpresso Experiment Kit is designed for 
prototyping use, and not for integration into an end-product. 

2.4  Code Read Protection 

The LPC1000 family has a Code Read Protection function (specifically CRP3, see datasheet for 
details) that, if enabled, will make the microcontroller impossible to reprogram (unless the user 
program has implemented such functionality). 

Note that Embedded Artists does not replace LPC1000 family chip where the chip has CRP3 
enabled. It’s the user’s responsibility to not invoke this mode by accident. 

2.5  CE Assessment 

The LPCXpresso Experiment Kit is CE marked. See separate CE Declaration of Conformity document. 

The LPCXpresso Experiment Kit is a class A product. In a domestic environment this product may 
cause radio interference in which case the user may be required to take adequate measures. 

EMC emission test has been performed on the LPCXpresso Experiment Kit. Standard interfaces like 
Ethernet, USB, serial have been in use. Connecting other devices to the product via the general 
expansion connectors may alter EMC emission. It is the user’s responsibility to make sure EMC 
emission limits are not exceeded when connecting other devices to the general expansion connectors 
of the LPCXpresso Experiment Kit. 

Due to the nature of the LPCXpresso Experiment Kit – an evaluation board not for integration into an 
end-product – fast transient immunity tests and conducted radio-frequency immunity tests have not 
been executed. Externally connected cables are assumed to be less than 3 meters. The general 
expansion connectors where internal signals are made available do not have any other ESD protection 
than from the chip themselves. Observe ESD precaution. 

2.6  Other Products from Embedded Artists 

Embedded Artists have a broad range of LPC1000/2000/3000/4000 based boards that are very low 
cost and developed for prototyping / development as well as for OEM applications. Modifications for 
OEM applications can be done easily, even for modest production volumes. Contact Embedded Artists 
for further information about design and production services. 

2.6.1  Design and Production Services 

Embedded Artists provide design services for custom designs, either completely new or modification to 
existing boards. Specific peripherals and I/O can be added easily to different designs, for example, 



LPCXpresso Experiment Kit - User’s Guide Page 10  

 

 

Copyright 2013 © Embedded Artists AB 

 

communication interfaces, specific analog or digital I/O, and power supplies. Embedded Artists has a 
broad, and long, experience in designing industrial electronics in general and with NXP’s 
LPC1000/2000/3000/4000 microcontroller families in specific. Our competence also includes wireless 
and wired communication for embedded systems. For example IEEE802.11b/g (WLAN), Bluetooth™, 
ZigBee™, ISM RF, Ethernet, CAN, RS485, and Fieldbuses. 

2.6.2  OEM / Evaluation / QuickStart Boards and Kits 

Visit Embedded Artists’ home page, www.EmbeddedArtists.com, for information about other OEM / 
Evaluation / QuickStart boards / kits or contact your local distributor. 

 

 

 



LPCXpresso Experiment Kit - User’s Guide Page 11  

 

 

Copyright 2013 © Embedded Artists AB 

 

3  LPCXpresso Experiment Kit 
The LPCXpresso Experiment Kit has been created as a guided tour to learn embedded programming 
with NXP’s LPC1000 microcontroller family with Cortex-M0/M3 cores from ARM. The experiments can 
be performed on a breadboard for maximum flexibility and ease of use. It is also possible to solder the 
components to a printed circuit board (pcb) and learn soldering at the same time. Figure 1 illustrates 
the two ways of working with the kit. To the left, all components have been soldered to the pcb and the 
LPCXpresso board is mounted in a socket on the pcb. To the right, a bread board is used and wires 
connect directly between the bread board and the LPCXpresso board. Note that the LPCXpresso 
board is not included in the normal LPCXpresso Experiment Kit. 

 

Figure 1 – Breadboard Experiments and Working with PCB 

The kit is based on the LPC1000 LPCXpresso evaluation boards, which is a whole family of boards. 
All experiments are based around the LPCXpresso LPC1115/1114 board unless otherwise noted. 
The term LPC111x will be used for the rest of the document to indicate both LPC1115 and LPC1114. 
Some of the experiments (Ethernet and USB related) are based on the LPCXpresso LPC1769 board. It 
is also possible to work with the LPC1114 in DIL28 package, which is a breadboard friendly package. 

The suggested work flow is as follows: first start with performing the experiments with a group of 
components on the bread board together with an LPCXpresso board. When done with the 
experiments, solder the components to the pcb. Continue with the next group of components. Some 
components only work on the pcb, simply because they do not fit into the bread board. Perform the 
experiments related to these components when they have been soldered to the pcb. There are of 
course other ways of working, for example soldering all components to the pcb at the end of all 
experiments or work separately with the LPC1114 in DIL28 package instead of an LPCXpresso board. 
Note that in the latter case, an LPC-Link™ is needed to program the LPC1114. The LPC-Link is the 
“debugger half” of an LPCXpresso board. 

The LPC111x is built around a Cortex-M0™ core from ARM and the LPC1769 has a Cortex-M3™ 
core. Most things addressed with the experiments are general to all microcontrollers and embedded 
systems programming in general. The details are however slightly different between different 
microcontrollers, for example the different functionality and registers tin the on-chip peripherals. 

After having worked with the LPCXpresso Experiment Kit, and completed the experiments, you will 
have gained several competences at basic level: 

 embedded programming 

 professional debugging techniques 

 microcontrollers and how they interact with their environment 



LPCXpresso Experiment Kit - User’s Guide Page 12  

 

 

Copyright 2013 © Embedded Artists AB 

 

 electronic design in general 

 how to work with a breadboard 

 how to solder 

It is assumed that you know how to program in C. You do not have to be an experienced user but 
at least know about the basics. If not, the Internet is full of ANSI-C tutorials. A good start can be 
https://en.wikibooks.org/wiki/C_Programming. 

The program development environment (also called Integrated Development Environment – IDE, for 
short) used is the LPCXpresso IDE, which is a Eclipse-based IDE, a GNU C-compiler, linker, libraries 
and an enhanced GDB debugger. For more information see [5]. 

3.1  Embedded Systems Programming 

Embedded systems programming is truly multi-disciplinary. An engineer must master many knowledge 
areas in order to do a good job. There are at least five of these areas: 

1) General programming knowledge 
(C, algorithms and data structures, understanding the development environment, debugging 
techniques, safe programming styles, version handling, documentation, etc.) 

2) Knowledge about programming close to the hardware / Firmware programming 
(interrupts, memory mapped accesses for control registers, types of memories, etc.)  

3) Knowledge about the specific hardware 
(details about microcontroller used incl. all peripherals, I/O, communication interfaces, etc.) 

4) Application programming 
(real-time operating systems, program frameworks, user interfaces, drivers, logging, field 
updates, boot loader structures, factory calibration/settings, configuration management, 
communication protocols, graphical programming, security, etc.) 

5) Last but not least, the domain knowledge – the functional that the product under development 
shall implement. 

When working through the experiments in the LPCXpresso Experiment Kit you will increase your 
knowledge in the first three areas. 

Enjoy working with the LPCXpresso Experiment Kit! 
 



LPCXpresso Experiment Kit - User’s Guide Page 13  

 

 

Copyright 2013 © Embedded Artists AB 

 

4  Kit Content 
In this chapter we will take a closer look at the different components included in the LPCXpresso 
Experiment Kit. 

The table below contains photos and a description of all components in order to simplify identification. 
Note that photos are only typical in the sense that they illustrate the components typical visual 
appearance. Exact appearance can differ for the components in the kit that you have received. The 
number of components shown in a picture can also differ from delivered quantity. 

Most components are specified with a Digikey or Mouser equivalent. If a component gets damaged, a 
new one can typically be ordered from Digikey, Mouser or any preferred component distributor. The 
Digikey/Mouser number is just to get the key data of the component. The actual components in the 
component kit might very well be of different brands. 

Component Description Note 

 

Breadboard 

 

http://en.wikipedia.org/ 
wiki/Breadboard 

Digikey: 438-1109-ND 
Mouser: 854-BB400T 

 

Cables, male-to-male 

 

http://en.wikipedia.org/ 
wiki/Jump_wire 

Prototype cables can be 
ordered from Embedded 
Artists web shop in 50 pcs 
packages (EA-ACC-017). 

 

Connectors for 
LPCXpresso board 

11mm long pins 

There is another pair of 
headers that looks very 
similar. This pair of 
connectors has longer pins.  
The other pair has shorter 
pins. 

This pair of connectors shall 
be soldered to an 
LPCXpresso board to make 
it experiment friendly – make 
it simple to connect cables to 
the pins. 

There is no distributor 
equivalent for this 
component. 



LPCXpresso Experiment Kit - User’s Guide Page 14  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Tantal capacitor 
C1, C2, C12 
22uF 

 

http://en.wikipedia.org/ 
wiki/Tantalum_capacitor 

 

This component is polarized. 
One of the two pins is longer 
than the other. This is the 
positive side. There is also a 
small plus sign printed on the 
components on the long pin 
side. 

AVX: TAP226K010SCS 
Digikey: 478-1874-ND 
Mouser: 581-
TAP226K010SCS 

 

Ceramic capacitor 
C3, C4 
18pF 

 

http://en.wikipedia.org/ 
wiki/Ceramic_capacitor 

 

The printed numbers on this 
component is “180”. 

This is not a polarized 
component. 

Murata: 
RPE5C2A180J2P1Z03B 
Digikey: 490-3632-ND 
Mouser: 81-
RPE5CA180J2P1Z03B 

 

Ceramic capacitor 
C5, C6, C7, C8, C9, C13 
100nF 

 

http://en.wikipedia.org/ 
wiki/Ceramic_capacitor 

 

The printed numbers on this 
component is “104”. 

This is not a polarized 
component. 

Kemet: C320C104K5R5TA 
Digikey: 399-4264-ND 
Mouser: 80-C320C104K5R 

 

Ceramic capacitor 
C10, C11 
100nF SMT 

 

http://en.wikipedia.org/ 
wiki/Ceramic_capacitor 

 

This is a surface mounted 
component and can only be 
soldered to the pcb (i.e., not 
used on the bread board). 

This is not a polarized 
component. 

Murata: 
GRM21BR71E104KA01L 
Digikey: 490-1673-1-ND 
Mouser: 81-
GRM40X104K25L 



LPCXpresso Experiment Kit - User’s Guide Page 15  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Schottky diode 
D1, D2 
1N5817 

 

http://en.wikipedia.org/ 
wiki/Semiconductor_diode  
 
http://en.wikipedia.org/ 
wiki/Schottky_diode 

This component is polarized. 
There is a ring on one pin-
side of the components 
(upper side in the picture). 
This is the cathode of the 
diode. The other side 
(bottom side) is the anode. 

Diodes Inc: 1N5817-T 
Digikey: 1N5817DICT-ND 
Mouser: 621-1N5817 

 

Stand-offs 
H1, H2, H3, H4 

These stand-offs are 
mounted in each corner of 
the pcb. 

AVC: BS-13S 
Any standard stand-off for 
4mm holes will work. 

 

Power jack 
J1 

This component and can 
only be soldered to the pcb 
(i.e., not used on the bread 
board). 

CUI Inc: PJ-102A 
Digikey: CP-102A-ND 

 

Connectors for 
LPCXpresso board 
J2 

There is another pair of 
headers that looks very 
similar. This pair of 
connectors has shorter pins.  
The other pair has longer 
pins. 

This pair of connectors shall 
be soldered to the pcb as a 
socket to the LPCXpresso 
board. 

Sullins: PPTC271LFBN-RC 
Digikey: S7025-ND 

 

Debug connector 
J3 

This component and can 
only be soldered to the pcb 
(i.e., not used on the bread 
board). Pin 1 is in the 
top/upper left corner in the 
picture. 

There is no distributor 



LPCXpresso Experiment Kit - User’s Guide Page 16  

 

 

Copyright 2013 © Embedded Artists AB 

 

equivalent for this 
component. 

 

RJ45, Ethernet connector 
J4 

This component and can 
only be soldered to the pcb 
(i.e., not used on the bread 
board). 

Stewart: SI-50170-F 
Digikey: 380-1103-ND 

 

Pin list, 1x3 
J5, J6, J8, J12 

Sullins: PEC03SAAN 
Digikey: S1012E-03-ND 

 

Pin list, 2x3 
J7 and J11 combined 

This component and can 
only be soldered to the pcb 
(i.e., not used on the bread 
board). 

Sullins: PEC03DAAN 
Digikey: S2012E-03-ND 

 

USB-B connector 
J9 

This component and can 
only be soldered to the pcb 
(i.e., not used on the bread 
board). 

TE Connectivity:  292304-2 
Digikey: A98573-ND 
Mouser: 571-292304-2 

 

USB-A connector 
J10 

This component and can 
only be soldered to the pcb 
(i.e., not used on the bread 
board). 

TE Connectivity: 292336-1 
Digikey: 292336-1-ND 
Mouser: 571-292336-1 



LPCXpresso Experiment Kit - User’s Guide Page 17  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

socket connector for 
wireless module 
J15 

This component and can 
only be soldered to the pcb 
(i.e., not used on the bread 
board). 

Sullins: NPPN101BFCN-RC  
Digikey: S5751-10-ND 

 

Shrouded pin list, 2x7 
J16 

This component and can 
only be soldered to the pcb 
(i.e., not used on the bread 
board). Pin 1 is in the 
top/upper left corner in the 
picture. 

Sullins: SBH11-PBPC-D07-
ST-BK  
Digikey: S9170-ND 

 

USB mini-B connector 
J17 

This component and can 
only be soldered to the pcb 
(i.e., not used on the bread 
board). 

Hirose: UX60-MB-5ST 
Digikey: H2959CT-ND 
Mouser: 798-UX60-MB-5ST 

 

Pin list, 1x6 
J18 

Sullins: PEC06SAAN 
Digikey: S1012E-06-ND 

 

LEDs 
LED1-LED8 

 

http://en.wikipedia.org/ 
wiki/Led 

This component is polarized. 
One of the two pins is longer 
than the other. This is the 
positive side, the anode. 
There is also a small cut on 
the side of the plastic 
package. This is on the short 
pin side, which is the 
negative side, the cathode. 

Any 5mm LED with Vf around 
1.7V and 150mcd at 20mA 
current will work, for 
example: 
Digikey: 1080-1136-ND 



LPCXpresso Experiment Kit - User’s Guide Page 18  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

RGB-LED 
LED10 

 

http://en.wikipedia.org/ 
wiki/Led 

This component is polarized. 
There is a small cut on one 
side of the plastic package. 
In the component picture to 
the left, the cut is on the left 
side of the package. 

From left to right the four 
pins in the picture are: 

Red-LED cathode 
All LEDs anode (positive 
side) 
Green-LED cathode 
Blue-LED cathode 

Harvatek: HT-333RGBW-A 
Any RGB-LED with common 
anode and a low value of 
blue LED Vf (around 3.2V) 
will work. 

 

7-sigment LED, dual digit 
LED9 

 

http://en.wikipedia.org/ 
wiki/7-segment_display 

This component is polarized. 
Pin 1 is in the lower left 
corner in the picture to the 
left. 

Lite-On Inc: LTD-4608JF 
Digikey: 160-1536-5-ND 
Mouser: 859-LTD-4608JF 

 

LEDs 
LED11-LED18, SMT 

 

http://en.wikipedia.org/ 
wiki/Led 

This is a surface mounted 
component and can only be 
soldered to the pcb (i.e., not 
used on the bread board). 

This component is polarized. 
There are green marks on 
the cathode side. 

Harvatek: HT17-2102SURC 
Possible substitute is 
Kingbright: APT2012SURCK 
Digikey: 754-1133-1-ND 
Mouser: 604-
APT2012SURCK 



LPCXpresso Experiment Kit - User’s Guide Page 19  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

PNP transistor, BC557B 
Q1, Q2, Q3 

 

http://en.wikipedia.org/ 
wiki/Bjt_transistor 

This component is polarized. 
One side of the plastic 
package is flat and the other 
side is rounded. When 
mounting this component 
make sure it is turned 
correctly. 

ON Semiconductor: 
BC557BRL1G 
Digikey: 
BC557BRL1GOSCT-ND 
Mouser: 863-BC557BRL1G 

 

Resistor, 15 Kohm, 7 pcs 
R1, R3, R35, R36, R41, 
R42, R59 

 

http://en.wikipedia.org/ 
wiki/Resistor 

Color: Brown, Green, Black, 
Red 

This is not a polarized 
component. 

Yageo: MFR-25FBF-52-
15K0 
Digikey: 15.0KXBK-ND 

 

Resistor, 0 ohm, 1 pcs 
R2 

 

http://en.wikipedia.org/ 
wiki/Resistor 

Color: Black 

This is not a polarized 
component. 

Yageo: ZOR-25-B-52-0R 
Digikey: 0.0QBK-ND 

 

Resistor, 330 ohm, 30 
pcs 
R4, R5, R6, R8, R9, R10, 
R11, R12, R13, R14, 
R15, R16, R17, R18, 
R19, R21, R22, R23, 
R25, R29, R30, R31, 
R32, R33, R34, R37, 
R38, R62, R63, R64 

 

http://en.wikipedia.org/ 
wiki/Resistor 

Color: Orange, Orange, 
Black, Black 

This is not a polarized 
component. 

Yageo: CFR-25JB-52-330R 
Digikey: 330QBK-ND 



LPCXpresso Experiment Kit - User’s Guide Page 20  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Trimming potentiometer, 
22 Kohm, 2 pcs 
R7, R20 

 

http://en.wikipedia.org/ 
wiki/Potentiometer 

 

10Kohm equivalent  from 
Bourns Inc.: 3352E-1-103LF 
Digikey: 3352E-103LF-ND 

 

Photo resistor, 1 pcs 
R24 

 

http://en.wikipedia.org/ 
wiki/Photo_resistor 

This is not a polarized 
component. 

Advanced Photonix: PDV-
P9002-1 
Digikey: PDV-P9002-1-ND 

 

Resistor, 220 ohm, 2 pcs 
R27, R28 

 

http://en.wikipedia.org/ 
wiki/Resistor 

Color: Red, Red, Black, 
Black 

This is not a polarized 
component. 

Yageo: FMP100JR-52-220R 
Digikey: 220WCT-ND 

 

Resistor, 1.5 Kohm, 8 pcs 
R26, R39, R40, R60, 
R61, R65, R66, R67 

 

http://en.wikipedia.org/ 
wiki/Resistor 

Color: Brown, Green, Black, 
Brown 

This is not a polarized 
component. 

Yageo: FMP100JR-52-1K5 
Digikey: 1.5KWCT-ND 



LPCXpresso Experiment Kit - User’s Guide Page 21  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Resistor, 2 Kohm, 16 pcs 
R43, R44, R45, R46, 
R47, R48, R49, R50, 
R51, R52, R53, R54, 
R55, R56, R57, R58 

 

http://en.wikipedia.org/ 
wiki/Resistor 

This is a surface mounted 
component and can only be 
soldered to the pcb (i.e., not 
used on the bread board). 

This is not a polarized 
component. 

Panasonic: ERJ-6ENF2001V 
Digikey: P2.00KCCT-ND 

 

Piezo buzzer, 1 pcs 
SP1 

 

http://en.wikipedia.org/ 
wiki/Buzzer 
 

This component is polarized. 
One pin is longer than the 
other. The longer pin is the 
positive side. The top label 
also indicates this side with a 
small plus sign. 

CUI Inc.: CEP-2242 
Digikey: 102-1115-ND 

 

Pushbuttons, 5 pcs 
SW1-SW5 

This component and can 
only be soldered to the pcb 
(i.e., not used on the bread 
board). The reason for this is 
that the pins are too short to 
get reliable connection on 
the bread board. There are 
two other special switches in 
the component kit that are 
suitable for bread board 
usage. 

Omron: B3F-1000 
Digikey: SW400-ND 
Mouser: 653-B3F-1000 

 

Pushbuttons for 
breadboard, 2 pcs 

These switches are for 
breadboard usage. Note that 
the pins must be cut to 
suitable length before 
mounted in the breadboard. 

Panasonic: EVQ-11L05R 
Digikey: P8079SCT-ND 
Mouser: 667-EVQ-11L05R 



LPCXpresso Experiment Kit - User’s Guide Page 22  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Rotary encoder, 1 pcs 
SW6 

This component and can 
only be soldered to the pcb 
(i.e., not used on the bread 
board). 

Below is without center 
switch. 
Panasonic: EVE-
GA1F1724B 
Digikey: P10859-ND 
Mouser: 667-EVE-
GA1F1724B 

 

Voltage regulator, 
MCP1700-330, 1 pcs 
U1 

 

http://en.wikipedia.org/ 
wiki/Low-
dropout_regulator 

This component is polarized. 
One side of the plastic 
package is flat and the other 
side is rounded. When 
mounting this component, 
make sure it is turned 
correctly. 

Microchip: MCP1700-
3302E/TO 
Digikey: MCP1700-
3302E/TO-ND 
Mouser: 579-MCP1700-
3302E/TO 

 

Microcontroller, 
LPC1114FN28, 1 pcs 
U2 

This component is polarized. 
There is a cut in one end of 
the plastic package, on the 
short side. This indicates 
where pin 1 is located. When 
mounting this component 
make sure it is turned 
correctly. 

NXP: LPC1114FN28/102 
Digikey: 
LPC1114FN28/102,12-ND 
Mouser: 771-
LPC1114FN28/1021 



LPCXpresso Experiment Kit - User’s Guide Page 23  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

 

Headers for U2 This pair of connector headers 
can (optionally) be soldered to 
the pcb as a socket for U2. By 
adding these 
connectors/headers it is 
possible to either mount the 
LPCXpresso board (in J2 
headers) or mount U2 in these 
headers. If J2 headers are 
mounted but these headers 
are not, then it is not possible 
to mount U2. 

Sullins: PPTC141LFBN-RC 
Digikey: S7012-ND 

 

Shift register, 74HC595, 
1 pcs 
U3 

 

http://en.wikipedia.org/ 
wiki/Shift_register 

This component is polarized. 
There is a cut in one end of 
the plastic package, on the 
short side. This indicates 
where pin 1 is located – lower 
left side in the picture to the 
left. When mounting this 
component make sure it is 
turned correctly. 

NXP: 74HC595N 
Digikey: 568-1484-5-ND 
Mouser: 771-74HC595N 

 

Temperature sensor, 
MCP9701, 1 pcs 
U4 

This component is polarized. 
One side of the plastic 
package is flat and the other 
side is rounded. When 
mounting this component 
make sure it is turned 
correctly. 

Microchip: MCP9701-E/TO 
Digikey: MCP9701-E/TO-ND 
Mouser: 579-MCP9701-E/TO 

 

SPI flash, 25LC080, 1 
pcs 
U5 

 

http://en.wikipedia.org/ 
wiki/Flash_memory 

This component is polarized. 
There is a cut in one end of 
the plastic package, on the 
short side. This indicates 
where pin 1 is located. When 
mounting this component, 
make sure it is turned 
correctly. 

Microchip: 25LC080D-I/P 
Digikey: 25LC080D-I/P-ND 
Mouser: 579-25LC080D-I/P 



LPCXpresso Experiment Kit - User’s Guide Page 24  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Temperature sensor, 
LM75, 1 pcs 
U6 

This is a surface mounted 
component and can only be 
soldered to the pcb (i.e., not 
used on the bread board). 

This component is polarized. 
When rotating the components 
so that the printed text on the 
package can be read, pin 1 is 
in the lower left side on the 
package. When mounting this 
component make sure it is 
turned correctly. 

NXP: LM75BD 
Digikey: 568-4688-1-ND 
Mouser: 771-LM75BD118 

 

I2C port expander, 
PCA9532, 1 pcs 
U7 

This is a surface mounted 
component and can only be 
soldered to the pcb (i.e., not 
used on the bread board). 

This component is polarized. 
When rotating the components 
so that the printed text on the 
package can be read, pin 1 is 
in the lower left side on the 
package. When mounting this 
component make sure it is 
turned correctly. 

NXP: PCA9532D 
Digikey: 568-1039-5-ND 
Mouser: 771-PCA9532D-T 

 

12MHz HC49 crystal, 1 
pcs 
Y1 

 

http://en.wikipedia.org/ 
wiki/Crystal_oscillator 

This is not a polarized 
component. 

CTS-Freq. Controls: ATS120B 
Digikey: CTX904-ND 

 



LPCXpresso Experiment Kit - User’s Guide Page 25  

 

 

Copyright 2013 © Embedded Artists AB 

 

5  Powering Options 
There are a couple of different options how to power the experiments.  Below is a short list, 
summarizing the options: 

Controller R2 Power option #1 Power via external +5V 
supply (J1 or J17) 

LPCXpresso board Do not mount R2 Power via USB 
connector on 
LPCXpresso board 

Yes, can also be done 

LPC1114 in DIL28 Mount R2 - Yes 

mbed Do not mount R2 Power via mbed USB 
connector 

Yes, can also be done 

 

If the servo interface, USB Host interface and/or RF module are used the board MUST be powered 
via an external +5V supply. Powering via the USB connectors of the LPCXpresso/mbed module is 
typically not enough. 

Below is a more details description. Read through all different options to determine which powering 
option fits your needs. 

 The simplest and most common way is to let the LPCXpresso board generate the +3.3V 
supply that is needed. This voltage is available on pin 29 on the LPCXpresso expansion 
connector (see schematic for details). R2 should not be mounted in this case. 

- The LPCXpresso board can supply up to about 100 mA on the +3.3V supply. 
Note that by turning on all LEDs and activating all features on the board it is possible 
to consume more than 100 mA. 

- Note that the voltage is not exactly 3.3V, but a Schottky diode forward voltage drop 
less, so around 3.15V. 

 In case the LPCXpresso board is not powered via its USB connector an external +5V DC 
supply is needed. Connect the external supply to J1 or J17 (as described below).  

- If the internal +3.3V voltage regulator on the LPCXpresso board is used, R2 shall not 
be mounted. Else R2 shall be mounted (and U1 is the +3.3V regulator in use). 

 If current consumption on the +3.3V supply is higher that the LPCXpresso board can provide 
an external +5V DC supply is needed. This is typically true when working with wireless/RF 
modules and/or with the USB Host interface (J10 connector). When working with servo 
motors an external +5V supply is absolutely needed. 

- An external +5V DC supply can connect to J1, which is a 2.1mm power jack with 
positive center pin. Note that there is no overvoltage protection in the design. Make 
sure that the connected power supply does not supply more than +5V DC. The 
current capability of the external +5V DC supply should be in the region of 1-2 
Ampere. 

- Connector J17 (mini-B USB connector on the back side of the pcb) can also be used 
to supply an external +5V DC supply via the USB Host port on a PC/laptop/USB hub. 

 When using the LPC1114 in DIL28 package an external +5V DC supply is needed. Feed the 
+5V via J1 or J17 (as described above) and mount R2 (in order to let U1 be the +3.3V 
regulator in use). 



LPCXpresso Experiment Kit - User’s Guide Page 26  

 

 

Copyright 2013 © Embedded Artists AB 

 

 When using an mbed module, this module can generate the needed +3.3V supply (supply 
comes from its own USB connector). R2 should not be mounted in this case. 

- The mbed module can supply much more current on the +3.3V supply than an 
LPCXpresso board can. 

- In case the mbed module is not powered via its USB connector, it is possible to 
power it with an external +5V DC supply via connector J1 or J17 (as described 
above). 

 



LPCXpresso Experiment Kit - User’s Guide Page 27  

 

 

Copyright 2013 © Embedded Artists AB 

 

6  Soldering 
This chapter describes how to solder the components to the naked pcb. Note that when a component 
has been soldered it can no longer be used for breadboard experiment. 

This chapter will not present a full beginner tutorial on soldering, but rather point out how to get started. 
There are many good soldering tutorials on the Internet, which can easily be found via a Google 
search. Sparkfun has a good starting guide: http://www.sparkfun.com/tutorials/354. They also have a 
series of guides for soldering SMD (Surface Mounted Device) components: 
http://www.sparkfun.com/tutorials/36. 

The following material is requires before you start soldering: 

 Temperature regulated soldering iron (in the 30-80 Watt region) 

 Thin (0.5-0.75 mm / 20-30 mil) solder with rosin-core and non-corrosive flux 

 Damp sponge or brass sponge 

 Wire cutter 

 Safety glasses 

It is also recommended to have a soldering fume extractor (or work in a well ventilated space and have 
a fan that simply blows away the soldering fumes). In either case, be aware of the health issues with 
soldering fumes. 

6.1  Component Placement 

The picture below illustrates the component placement on the pcb. The picture is also available as a 
PDF where it is possible to search for the component designators. 

http://www.sparkfun.com/tutorials/354
http://www.sparkfun.com/tutorials/36


LPCXpresso Experiment Kit - User’s Guide Page 28  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Figure 2 – LPCXpresso Experiment Kit PCB with Component Designators 

 



LPCXpresso Experiment Kit - User’s Guide Page 29  

 

 

Copyright 2013 © Embedded Artists AB 

 

7  Experiments 
This chapter contains the experiments. It is recommended to follow the order of the experiments. It has 
been compiled to give you the best learning curve. There are multiple small steps in the experiments 
and they build upon each other. Where appropriate, some theoretical discussions have been added. 

All experiments are based around the LPCXpresso LPC111x board unless otherwise noted. Both 
LPCXpresso LPC1115 and LPC1114 boards are ok to use. Some of the experiments – Ethernet and 
USB - at the end of the chapter will use the LPCXpresso LPC1769 board. There is also a separate 
section describing the differences between using the LPCXpresso LPC1115/LPC1114 and the 
LPC1114 in DIL28 package. 

It is recommended to download the LPC111x User’s Manual from NXP and have it handy. This 
document is also called UM10398. Many references into this document will be done and this is also 
part of the learning – how to find the relevant information in a user’s manual. It is also recommended to 
have the schematic available. 

It is further recommended to start working with the breadboard, as opposed to start soldering all 
components to be pcb. A better time to solder the components is after having completed all the initial, 
basic experiments. 

7.1  Preparation 

One preparation is needed before it is possible to start with the experiments. The LPCXpresso 
LPC111x board must be made experiment friendly – a header with female and make connectors shall 
be soldered to the LPCXpresso board. See picture below for details. Note that there are two sets (of 
two) of similar 27 position headers in the component kit. It is the headers with long pins that shall be 
soldered to the LPCXpresso board. 

 

Figure 3 – LPCXpresso Board with Prototype Headers 

 

7.2  Control a LED 

In this first experiment you will learn how to control the I/O pins of the LPC111x microcontroller. More 
specifically you will learn how to control a LED. This first experiment will have a very detailed 
description since it is the first one and there are a lot of things to learn about how to create, compile, 
download and debug a program in the LPCXpresso IDE. The level of details in the descriptions will 
gradually decrease in later experiments. 



LPCXpresso Experiment Kit - User’s Guide Page 30  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.2.1  Lab 1a: Control LED 

We will start with controlling LED1 in the schematic, which is found in the schematic on page 4, upper 
left corner. LED1’s cathode is connected to signal GPIO_4-LED-SSEL.LED1’s anode is connected to 
+3.3V via a (current limiting) series resistance. Figure 4 illustrates were LED1 can be found in the 
schematic. On schematic page 2, we can see that this signal is connected to PIO0_2 on the 
LPCXpresso LPC1115 board. Figure 5 illustrates where to find the signal and also where to find the 
+3.3V supply. 

 

Figure 4 – LED1 on Schematic Page 4 

 

 

Figure 5 – Signal GPIO_4-LED-SSEL on Schematic Page 2 

As a first step, get a LED (representing LED1), a 330 ohm resistor (representing R4), two male-to-male 
prototype cables and the breadboard from the components bag. Mount these on the breadboard and 



LPCXpresso Experiment Kit - User’s Guide Page 31  

 

 

Copyright 2013 © Embedded Artists AB 

 

connect to the LPCXpresso LPC111x board, as illustrated in Figure 6. Note that only the target 
processor part of the LPCXpresso board is shown – the black box labeled LPCXpresso board. The 
photo to the left illustrates which part of the real LPCXpresso his black box represents.   

 

 

 

 

 

 

 

 

Figure 6 – Breadboard Connections for LED1 (breadboard view) 

Figure 7 below illustrates how it can look like in reality. Note that the connections on the breadboard 
are slightly different than outlined in Figure 6 above. It demonstrates that it is possible to make the 
connections in many different, yet compatible, ways. 

 

LPC-Link side 

LPC111x target side 



LPCXpresso Experiment Kit - User’s Guide Page 32  

 

 

Copyright 2013 © Embedded Artists AB 

 

Figure 7 – Breadboard Connections for LED1 (real photo) 

 

The current through the Light Emitting Diode (LED) is limited and controlled by the series resistor. It 
has to be limited since the voltage drop across the LED is fairly constant. The voltage difference 
between the LED’s forward voltage drop and driving voltage must be absorbed by the series resistor. 
The current through the LED (and series resistor) can be calculated as I = (Vsupply – Vleddrop) / R. 
Different LEDs have different typical current levels. It can be 1, 2, 10, 20 mA for smaller LEDs. Bigger 
LEDs can have much higher ratings. 

The LED forward drop voltage is typically 1.5V for a red LED. Other colors have different forward 
voltage drops. There are also variations between different brands. Consult the LED’s datasheet for 
details about forward voltage drop and current level. The red LED’s included in the component kit has 
a forward voltage drop of 1.5V and designed for 10mA current. With a 330 ohm series resistor the 
current is limited to about 5mA, which is OK also. The light intensity at 5mA is acceptable for our 
(experiment) purposes. 

The current level determines the driving method. For moderate levels (typically below 4 mA) most 
microcontrollers and logic gates can drive the LED directly. This is the method used in our 
experiments. Some microcontrollers have high-current capacity outputs. The LPC1110 family 
microcontrollers have a 20 mA output pin (PIO0_7, see datasheet for details). 

Almost all output pins have higher current capabilities sinking current than driving current. It is 
therefore common to connect LEDs like in Figure 4, with the cathode connected to the microcontroller 
pin. When driving, current is flowing into the micro controller pin (i.e., sinking current). 

Another reason for letting the microcontroller drive the LED by sinking current is that most 
microcontrollers power-up with all pins as inputs with pull-up resistors enabled. This basically means 
that the pin will be driven high weakly. The LED will not turn on shortly during a power-up. It will be at a 
known (off) state until the application program controls the LED actively. 

If the driving current is higher (> 5 mA) a high-current driver chip can be used, or discrete 
transistors/mosfets. 

A LED is a polarized component, meaning that it matters how the two ends are connected. The two 
ends are called anode and cathode, respectively. Current flows from anode to cathode, but blocks in 
the reverse direction. Sometimes the anode is called the positive side and cathode the negative side. 
The cathode is typically marked somehow on a LED (shorter pin, cut in plastic package, etc).   

Mounting a LED the wrong way has no catastrophic result. The result is that the LED will not light 
(since current through the LED will be blocked). Failing to add the series resistor will have more sever 
effects, though. Depending on high strong (how much current it can deliver) the power supply is, the 
current level through the LED can become high enough to destroy the LED. Therefore, be careful to 
always connect a series resistor with correct resistance value. 

 

The LPC111x is a relatively low pin count processor with only 48 pins. This is true for the package 
used on the LPCXpresso board. There are other packages with different number of pins for this 
processor also. The external pins on the chip package are not enough for connecting all internal 
peripheral units to unique pins. Instead each I/O pin has up to four alternative connections. Read the 
LPC111x user’s manual for more information. You will have to read a lot in this document so you better 
get started immediately. Have a look in chapter 7 - LPC1100/LPC1100C/LPC1100L series: I/O 
configuration in the LPC111x user’s manual for a description of the how the alternative pin functions 
can be controlled. 

Pin PIO0_2 is controlled by register IOCON_PIO0_2. In the description for this register we can see that 
there are three alternative pin functions: 

- PIO0_2, a general purpose input/output, port #0, pin #2 



LPCXpresso Experiment Kit - User’s Guide Page 33  

 

 

Copyright 2013 © Embedded Artists AB 

 

- SSEL0, a control signal for peripheral block SSP 

- CT16B0_CAP0, an input signal to 16-bit timer #0  

Note that only one functional signal can be connected to the pin at any given point in time. It is 
however possible to change during program execution. By default, after reset, the register is initialized 
to PIO0_2, have a pull-up resistor enabled, input hysteresis disabled and to be a standard push/pull 
GPIO output (if defined as an output). Another register controls the direction of the general purpose 
digital input/output and this register initialize PIO0_2 to be an input after reset. 

Hence, after a reset, PIO0_2 is an input with pull-up resistor enabled. The pin is pulled high weakly but 
cannot source any larger current. That means that LED1 will be off after reset (because the LED will 
turn on when PIO0_2 is pulled low and if enough current can sink into the pin). 

All LPC111x registers are defined in file: LPC11xx.h. It is part of the framework needed to program 

the LPC111x. Have a look in file LPC11xx.h. It is found in the CMSIS library, in the inc sub-

directory. 

What address is register IOCON_PIO0_2 defined as?   _________________________________ 
(you will have to derive the address in several steps – tip: start searching for the LPC_IOCON register 

at the end of the LPC11xx.h file. The register will be accessed as: LPC_IOCON->PIO0_2) 

Is the derived address the same as in the LPC111x user’s manual?  ____________ 

Now, have a look in chapter 12: LPC111x/LPC11Cxx General Purpose I/O (GPIO) in the LPC111x 
user’s manual for a description of how the general purpose I/O functionality is controlled. There is a 
GPIO data direction register that controls the direction of each pin in a port. PIO0_2 belongs to port #0. 
Bit #2 in register GPIO0DIR controls the direction of the pin. See Figure 8 for details. 

 

Figure 8 – GPIO Data Direction Register 

Register GPIO0DATA holds the current state of the pins in port #0. Bit 2 in this register reflects the 
state of pin PIO0_2. This is regardless if the pin is an input or output. If a pin is an output the value in 
GPIOxDATA is driven to the pin. 

 

Figure 9 – GPIO Data Register 

There are also several registers related to interrupt functionality. We will not work with that right now. In 
later experiments we will return to this. 



LPCXpresso Experiment Kit - User’s Guide Page 34  

 

 

Copyright 2013 © Embedded Artists AB 

 

Note that registers GPIO0DIR and GPIO0DATA are accessed as LPC_GPIO0->DIR and 
LPC_GPIO0->DATA, respectively. 

Below is the two statements needed to first set PIO0_2 to an output and then pull the output low. This 
will turn the LED on. 

// Set PIO0_2 as an output 

LPC_GPIO0->DIR = LPC_GPIO0->DIR | (0x1<<2); 

 

// Turn LED1 on = set PIO0_2 pin low, i.e., clear bit 

LPC_GPIO0->DATA = LPC_GPIO0->DATA & ~(0x1<<2); 

 

As seen, each of the registers is first read and then bit #2 is manipulated. In the first statement, bit #2 
is set which makes PIO0_2 an output. In the second statement, bit #2 is set to zero. This pulls PIO0_2 
low. 

Note that all bits in the registers must be read and only the bit of interest shall be manipulated. The 
shift operation, (0x1<<2), is a good way of writing code. The “<<2” part indicates clearly that it is bit #2 
that is manipulated. It is simpler for a reader of the code to quickly see this than to write the constant 
value 0x04. 

Below is an alternative, more compact way of writing the statements. This is a common way to write 
this kind of statements. 

// Set PIO0_2 as an output 

LPC_GPIO0->DIR |= (0x1<<2); 

 

// Turn LED1 on = set PIO0_2 pin low, i.e., clear bit 

LPC_GPIO0->DATA &= ~(0x1<<2); 

 

In real, professional programs, it is common to use defines to hide details about hardware 
manipulation. Below is an example of how this can be done. 

// Create defines for simpler access of LED1 

#define DIR_REG_LED1    LPC_GPIO0->DIR 

#define DATA_REG_LED1   LPC_GPIO0->DATA 

#define PIO_PIN_LED1    2 

#define LED1_ON         DATA_REG_LED1 &= ~(1<<PIO_PIN_LED1) 

#define LED1_OFF        DATA_REG_LED1 |=  (1<<PIO_PIN_LED1) 

 

// Set PIO0_2 as an output 

DIR_REG_LED1 |= (0x1<<PIO_PIN_LED1); 

 

// Turn LED1 on 

LED1_ON; 

 

It is possible to take the principles further and create general macros for handling all ports and pins. 
This was just an example of how to create well-structured, maintainable and professionally looking 
code. 

Chapter 9 contains a description how to get started with the LPCXpresso IDE. Read this chapter and 
follow the guide how to import the projects. Start working with project “lab 1a”, which is the base for 
this first experiment. 

After compiling and linking without errors, follow the guide how to download and run the project. 

 

In embedded programming it is important to have full control over the variables, more specifically the 
number range they can hold. The original C standard was a little vague on the number of bits different 
variable types have. It is specified as “at least X number of bits” and there is a specified order between 
different types. However in embedded programming the exact number of bits is important to keep track 
of. Therefore it is common to have an include file that have created/specified new variable types with 
the number of bits exactly specified. We will use this setup in all experiments. 



LPCXpresso Experiment Kit - User’s Guide Page 35  

 

 

Copyright 2013 © Embedded Artists AB 

 

Include a file called type.h in all program files. The main content of the file is presented below: 

#if defined   (  __GNUC__  ) 

#include <stdint.h> 

#else 

/* exact-width signed integer types */ 

typedef   signed          char int8_t; 

typedef   signed short     int int16_t; 

typedef   signed           int int32_t; 

typedef   signed       __int64 int64_t; 

 

/* exact-width unsigned integer types */ 

typedef unsigned          char uint8_t; 

typedef unsigned short     int uint16_t; 

typedef unsigned           int uint32_t; 

typedef unsigned       __int64 uint64_t; 

#endif // __GNUC__ 

 

#ifndef NULL 

#define NULL    ((void *)0) 

#endif 

 

#ifndef FALSE 

#define FALSE   (0) 

#endif 

 

#ifndef TRUE 

#define TRUE    (1) 

#endif 

As seen, there are four signed and four unsigned variable types of length 1, 2, 4 or 8 bytes (8, 16, 32, 
or 64 bits). The file also declares the commonly used constants: NULL, FALSE and TRUE. 

Code becomes much more portable (between different compilers) if a common include file like this is 
used. It also becomes more readable. 

 

7.2.2  Lab 1b: GPIO and Bit Masking 

There is hardware support in the GPIO peripheral block for accessing selected bits, as opposed to 
accessing all of them. This is described in the LPC111x user’s manual, chapter 12.4.1 – Write/read 
data operations. In short, the GPIOxDATA register can be accessed on many different addresses. The 
address used to access the register determines which bit(s) that is/are accessed. 

Below is a copy of a function from NXP’s driver library for the LPC111x. As seen, it is a general 
function for manipulating any GPIO output (any port, any pin). The array named 
MASKED_ACCESS[…] is used to get the correct access address to the GPIOxDATA register, given 
which bit(s) to access. Note that the function below only allows one bit at a time to be accessed. 
(1<<bitPosi) is used to index into array MASKED_ACCESS[…]. It is possible to create more general 
access functions where several pins can be controlled simultaneous, for example 
MASKED_ACCESS[(1<<bitPosi1) | (1<<bitPosi2) | (1<<bitPosi3)]. 

/***************************************************************************** 

** Function name:  GPIOSetValue 

** 

** Descriptions:  Set/clear a bitvalue in a specific bit position 

**    in GPIO portX(X is the port number.) 

** 

** parameters:   port num, bit position, bit value 

** Returned value:  None 

**  

*****************************************************************************/ 

void 

GPIOSetValue( uint32_t portNum, uint32_t bitPosi, uint32_t bitVal ) 

{ 

    // Check that bitVal is a binary value - 0 or 1 

    if (bitVal <2 ) 

    { 

        /* The MASKED_ACCESS registers give the ability to write to a specific bit 



LPCXpresso Experiment Kit - User’s Guide Page 36  

 

 

Copyright 2013 © Embedded Artists AB 

 

         * (or bits) within the GPIO data register. See the LPC11/13 user manual 

         * for more details. 

         * 

         * (1<<bitPosi) gives us the MASKED_ACCESS register specific to the bit 

         * that is being requested to be set or cleared. 

         * 

         * (bitVal<<bitPosi) will be either be 0 or will contain a 1 in the 

         * appropriate bit position that matches the MASKED_ACCESS register 

         * being written to. 

         */ 

        switch ( portNum ) 

        { 

            case PORT0: 

                LPC_GPIO0->MASKED_ACCESS[(1<<bitPosi)] = (bitVal<<bitPosi); 

                break; 

            case PORT1: 

                LPC_GPIO1->MASKED_ACCESS[(1<<bitPosi)] = (bitVal<<bitPosi); 

                break; 

            case PORT2: 

                LPC_GPIO2->MASKED_ACCESS[(1<<bitPosi)] = (bitVal<<bitPosi); 

                break; 

            case PORT3: 

                LPC_GPIO3->MASKED_ACCESS[(1<<bitPosi)] = (bitVal<<bitPosi); 

                break; 

            default: 

                break; 

        } 

    } 

} 

 

Create a similar, general function for setting the direction of any GPIO pin (input or output). Call this 

new function GPIOSetDir. The function’s input parameters shall be port number, bit number and 

direction. 

After that, recreate the program from the previous experiment using these two new functions. 

 

It is good programming practice to place functions that are related in separate files. It will enhance tile 
source code structure and make it easier to maintain and understand in general. An accompanying 
include file (h-file) declares the functions that are exposed to other source code files. 

Place the GPIO related functions in a separate file called gpio.c and create an include file, 

gpio.h, that declares the exposed functions.  

Also, in order to keep the file main.c reasonable short move all defines that are related to the board 

to a separate include file board.h. 

 

 

 

 

 

7.2.3  Lab 1c: Delay Function – LED Flashing 

Next, design a program that flash with the LED – 50 ms (milli seconds) on, 150 ms off, 50 ms on and 
finally and 750 ms off. Continuously repeat this 1000 ms cycle. 

In is a common task in embedded systems to operate on exact time and control external devices 
exactly. In this case a LED. 

One obvious solution is to create a delay function. An example is listed below that forced the CPU to 
execute NOP (no operation) instructions in a loop. Use this function and test different values in order to 
establish a relationship between the number of NOPs and the actual delay in time. 



LPCXpresso Experiment Kit - User’s Guide Page 37  

 

 

Copyright 2013 © Embedded Artists AB 

 

/* 

 * Delay by executing a given number of NOPs. 

 */ 

void 

delayNops(uint32_t nops) 

{ 

    volatile uint32_t i; 

 

    for (i = 0; i < nops; i++) 

        asm volatile ("nop"); 

} 

 

 

About how many NOPs are needed for a 1 second delay? ______________________________ 

What does this tells you about the execution speed of the LPC111x? ______________________ 

Note that delay loops like this should never be used in real programs. All processor execution time is 
“lost” in the loop and no other useful work is done. Also, the delay can vary depending on what other 
parts of the system do (for example how much time is spent in interrupt routines, which will be 
introduced later on). Later on we will explore other method of creating exact delay functions, so for 
now, the loop method will have to do.  

Create a function that delays execution a specified number of milliseconds (as input parameter). Place 
the function in a separate file delay.c. After that, create the program that double-flash the LED 

according to the specification above. 

Now can be a good time to get acquainted a bit more with the debugger, specifically single stepping. 
This means that the debugger let the microcontroller execute one statement at a time, and stops after 
every line. Note that for this to work the compiler optimization most not be turned on too heavily. –O0 
and –O1 is typically what work. More optimization will rearrange the code so there are no clear 
boundaries between the source code statements (= rows in the source code). 

Instead of pressing the Start/Resume button it is possible to press the Step Over or Step Into 
buttons. Both “step” buttons will stop execution after the current statement. The difference is that if the 
statement involves a function call, Step Over will not single step through all statements in the function 
that is called. Step Into will do just this. 

The current experiment exemplified just perfect where the different is. When hitting the delay function it 
is best to Step Over, instead of into it. Single stepping through all the loop iterations would take 
forever. 

Add a loop counter in the forever loop. Set a breakpoint in the forever loop in main() so that execution 
halts every loop iteration. Verify that it is possible to get the value of the loop variable by hovering over 
the variable. Remove the breakpoint and test single stepping, with both Step Over and Step Into. 

 

 

 

 

Figure 10 – LPCXpresso IDE Step Over/Into Buttons 

7.2.4  Lab 1d: Morse Code 

Create a function that flashes the LED according to the Morse code alphabet. Check the Wiki for 

details: http://en.wikipedia.org/wiki/Morse_code. The function shall take an arbitrary string as input and 
send the string by flashing the LED. 

Step over Step into Pause 



LPCXpresso Experiment Kit - User’s Guide Page 38  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.3  Read a Digital Input 

In this experiment you will learn how to control the I/O pins of the LPC111x as inputs. More specifically 
you will learn how to read a digital input that reflects that state of a push-button. 

7.3.1  Lab 2a: Read Push-button 

We will start with reading the state of push-button SW2 in the schematic, which is found in the 
schematic on page 4, lower left corner. SW2 is connected to signal GPIO_17-KEY. Figure 11 
illustrates were SW2 can be found in the schematic. On schematic page 2, we can see that this signal 
is connected to PIO1_5 on the LPCXpresso LPC111x board. Figure 12 illustrates where to find the 
signal and also where to find the GND pin. 

 

Figure 11 – SW2 on Schematic Page 4 

 

Figure 12 – Signal GPIO_17-KEY on Schematic Page 2 



LPCXpresso Experiment Kit - User’s Guide Page 39  

 

 

Copyright 2013 © Embedded Artists AB 

 

Keep the previously mounted LED. Get a push-button (representing SW2) and a 330 ohm resistor 
(representing R31) from the components bag. Note that there are two types of push-buttons; for pcb 
mounting and for breadboard mounting. It is the latter that shall be used now. Mount the push-button 
and resistor on the breadboard and connect to the LPCXpresso LPC111x board, as illustrated in 
Figure 13. 

 

Figure 13 – Breadboard Connections for SW2 and LED 

 

It is common that microcontroller input pins have built-in pull-up resistors. If the input is not driven the 
input is high. Sometimes the behavior of the pins is very programmable, for example if pull-up or pull-
down resistors and input hysteresis shall be enabled. In this experiment a pull-up resistor must be 
enabled on the input pin. When pressing the push-button it will actively pull the input pin to ground. 
Else the internal pull-up resistor will pull the input high. 

It is important to check the datasheet how strong the pull-up resistors are so that the external signal 
can pull the pin low and vice versa that the built-in pull-up resistor can pull an inactive signal high. 

The series resistor is for protection if the (supposedly) input pin is an output. If that output is pulled high 
by the microcontroller and the push-button is pressed, the output could be damaged due to excessive 
current flowing to ground if a series resistor does not limit the current. The situation is not an imaginary 
situation. Suppose there already is an application running on the microcontroller from a previous 
experiment. That application might very well use the pin as an output. Before the correct application 
has been downloaded the damaged can happen. Therefore it is a good practice to add series resistors 
to all signals that can drive a microcontroller pin - the key in this case, which can drive the signal low. 

 

Pin PIO1_5 is controlled by register IOCON_PIO1_5 (check chapter 7 - 
LPC1100/LPC1100C/LPC1100L series: I/O configuration in the LPC111x user’s manual). In the 
description for this register we can see that there are three alternative pin functions: 

- PIO1_5, a general purpose input/output, port #1, pin #5 



LPCXpresso Experiment Kit - User’s Guide Page 40  

 

 

Copyright 2013 © Embedded Artists AB 

 

- RTS, a control output signal for peripheral block UART 

- CT32B0_CAP0, an input signal to 32-bit timer #0  

By default, after reset, the register is initialized to PIO1_5, have a pull-up resistor enabled and disabled 
input hysteresis. As we know from the previous experiment, there is another register that controls the 
direction of the general purpose digital input/output and this register initialize PIO1_5 to be an input 
after reset. 

Hence, after a reset, PIO1_5 is an input with pull-up resistor enabled. The pin is pulled high weakly 
which is exactly what we need. When pressing the push-button the pin will be pulled low. The input will 
be read high when no push-button is pressed and low when it is pressed. 

In Experiment 1b, a function called GPIOSetDir was created. Even thought the direction of 

PIO1_5 is correct from reset it is good programming practice to initialize the pin according to need. It is 
simpler for other programmers to read and understand an application if there are no hidden 
assumptions. 

Register LPC_GPIO1->DATA holds the current state of the pins in port #1. Bit 5 in this register reflects 
the state of pin PIO1_5. Since the register reflects all pins in the port the bit of interest must be masked 
out. Use the same principle as presented in Lab 1a, i.e., AND with (1 << bitNumber). 

Create a program that reads the state of the pin (and hence the push-button) and copy the result to a 
LED. Turn on the LED when the push-button is pressed. Below is the skeleton of the program that you 
shall create. 

// Create defines for simpler access of LED1 

#define LED1_PORT    PORT0 

#define LED1_PIN     2 

#define LED_ON       0    //Low output turn LED on 

#define LED_OFF      1    //High output turn LED off 

 

// Create define for simpler access of push-button 

#define SW2_PIN      5 

 

// Initialize pins to be inputs and outputs, 

// set outputs to defined states 

... 

 

uint8_t ledState; 

 

//enter forever loop 

while (1) 

{ 

  //Check if push-button is pressed (input is low) 

  if ( (LPC_GPIO1->DATA & (1 << SW2_PIN)) == 0) 

    ledState = LED_ON; 

  else 

    ledState = LED_OFF; 

 

  //Control LED 

  GPIOSetValue( LED1_PORT, LED1_PIN, ledState); 

} 

 

There are many things that can be done to create macro/defines to get a better abstraction structure of 
the program above. First, the push-button states (pressed, not pressed) can have constants defined. 
The LPC_GPIO1->DATA register can be defined as #define SW2_DATAPORT LPC_GPIO1->DATA. It 
is also possible to create a general SW2_VALUE macro where the pin state is returned. 

Update the code above according to these principles (more general and better structured code). 

It is also possible to create a general function GPIOGetValue(), just like GPIOSetValue(). This will be 
an exercise in the next experiment. 



LPCXpresso Experiment Kit - User’s Guide Page 41  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.3.2  Lab 2b: GPIO and Bit Masking 

As presented in Lab 1b there is hardware support in the GPIO peripheral block for accessing selected 
bits, as opposed to accessing all of them. This is described in the LPC111x user’s manual, chapter 
12.4.1 – Write/read data operations. In short, the LPC_GPIOx->DATA register can be accessed on 
many different addresses. The address used to access the register determines which bit(s) that is/are 
accessed. 

The function prototype is presented below. Create a version of the function that utilizes the masked 
read functionality. Also create a version of the function that utilizes the bit masking we have used in 
previous labs. 

/***************************************************************************** 

** Function name:       GPIOGetValue 

** 

** Descriptions:        Read (bit)value in a specific bit position 

**                      in GPIO portX(X is the port number.) 

** 

** parameters:          port num, bit position 

** Returned value:      0 if bit is not set, else a non-zero value (if bit is set) 

** 

*****************************************************************************/ 

uint8_t GPIOGetValue( uint32_t portNum, uint32_t bitPosi) 

{ 

  ...  //implemented either with “masked read” functionality in the GPIO hardware 

  ...  // or via direct bit masking with GPIOxDATA & (1 << bit) 

} 

 

Compare which functions is fastest. A simple method is to create a loop and call the function a million 
times. Turn on a LED before starting the loop and turn it off after the loop. Manually clock the time the 
LED is on. To get the execution time for one call, divide this LED-on-time with one million. 

Place the function in file gpio.c. 

 

7.3.3  Lab 2c: Logic between inputs and output 

In this experiment we will introduce logic between the input (push-buttons) and the output (a LED and 
a buzzer). Let’s begin with connecting two push-buttons, SW2 (which we already have) and SW3. 
According to Figure 11 and Figure 12, SW3 is connected to signal GPIO_16-KEY, which in turn is 
connected to PIO1_4. Figure 13 below illustrates how the connection can be done on the breadboard. 

Create a program that reads the two push-buttons and turn on the LED only when both are pressed 
simultaneous. Then change the logic so that the LED is on if only one of the push-buttons is pressed, 
but not both. 

The program structure will be the same as in Lab 2a and 2b, a forever loop. Read both inputs and then 
calculate the output value and output it. 



LPCXpresso Experiment Kit - User’s Guide Page 42  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Figure 14 – Breadboard Connections for SW2, SW3 and LED 

 

Another output device, besides a LED, is a buzzer. A buzzer outputs a single frequency tone when 
driving current through it. A PNP-transistor is controlling the current through the buzzer. Pulling the 
base of the transistor low will enable the current through the transistor (and hence the buzzer). The 
series resistor on the transistor’s base connection limits the current (since signal GPIO_7-BUZZ will be 
close to ground, 0V, when pulled low by the LPC111x and a PNP bipolar junction transistor’s emitter-
base voltage is fixed to around 0.7V). 

 

Figure 15 – Buzzer on Schematic Page 4 



LPCXpresso Experiment Kit - User’s Guide Page 43  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Figure 16 – Signal GPIO_7-BUZZ on Schematic Page 2 

Add the buzzer to the breadboard. Some rearrangement might be needed. Note that the buzzer in the 
component kit might look different from the one in the picture below. Also note that both the PNP 
transistor and the buzzer are polarized components so it is important to turn them correct. Also note 
that the series resistor on the PNP base pin is 1.5 kohm (a different value than we have used so far).  

 

Figure 17 – Breadboard Connections for SW2, SW3, Buzzer and LED 



LPCXpresso Experiment Kit - User’s Guide Page 44  

 

 

Copyright 2013 © Embedded Artists AB 

 

Modify the existing code in this experiment so that the LED and the buzzer are controlled the same 
way (LED on = buzzer on). 

As a fun extra experiment, repeat the Morse code experiment in Lab 1d with the buzzer as Morse code 
output instead of the LED. 

Note that the buzzer will turn on during program download (on LPCXpresso boards). This is because 
pin PIO0_7 is also connected to a LED on the LPCXpresso board. This will drive the signal low and 
hence turn on the buzzer. The solution is to connect a 330 ohm (pull-up) resistor between signal 
PIO0_7 and +3.3V. 

 

7.3.4  Lab 2d: Toggling LED 

In this experiment we will introduce a state. Pressing the push-button shall turn the LED on. Pressing 
again will turn the LED off. Another way of expressing it is that the LED is toggled every time the push-
button is pressed. 

The structure of the program is outlined below. When the push-button first is pressed, the LED is 
toggled. Check the current state of the LED and inverse it. The recommended structure for this is to 
store the LED state in a separate variable. After having toggled the LED, the program must wait until 
the push-button has been released. If this last step is omitted, the LED would constantly toggle at a 
high rate as long as the push-button is pressed. That would not be a desirable solution since the LED 
can be in any state when the push-button is finally released. 

// declare variables 

uint8_t stateLED; 

 

// Initialize pins to be inputs and outputs, 

// set outputs to defined states 

... 

 

//enter forever loop 

while (1) 

{ 

  //check if push-button is pressed 

  if (...) 

  { 

    //toggle LED 

    ... 

 

    //wait until push-button is released 

    while(...); 

  } 

} 

 

You will probably notice that the LED will toggle a little more than expected. For example when 
releasing the push-button, sometimes the LED will not change state. This is because of contact 
bounce inside the push-button. The microcontroller is so fast so it will detect multiple presses/releases. 
In the next experiment you will find one way of dealing with this problem. 

7.3.5  Lab 2e: Sampling of Inputs 

In this experiment we will introduce the concept of sampling. In the previous experiments the outputs 
have been controlled as quickly as possible and the inputs have been read as often as possible. 
Although simple, it is often desirable to have more detailed control of the system behavior. 

Sampling is a concept where the state of inputs is read at defined points in time, the sample period. 
Outputs are also controlled/changed at these points in time. More advanced systems can have many 
different rates active at the same time. Some inputs are read at high rate (for example 1000 Hz, once 
each 1 ms) while others are read at lower date, say 10 Hz (i.e., once each 100 ms). The used rate is a 
trade-off between workload for the microcontroller and how fast the input can change (or how fast the 



LPCXpresso Experiment Kit - User’s Guide Page 45  

 

 

Copyright 2013 © Embedded Artists AB 

 

outputs must be controlled). A fast changing signal must for example be sampled often in order not to 
miss any important information. 

In this experiment we shall sample the push-button with different sample rates. The forever-loop of the 
previous experiment (Lab 2d) is used. A delay function is introduced before checking push-button 
state. Use the delay function created in Lab 1c for this. If the delay is for example 100 ms, the effect is 
that the push-button is sampled at 10 Hz rate. 

 

// declare variables 

uint8_t stateLED; 

 

// Initialize pins to be inputs and outputs, 

// set outputs to defined states 

... 

 

//enter forever loop 

while (1) 

{ 

  //delay a specified period of time (the sample period) 

  ... 

 

  //check if push-button is pressed 

  if (...) 

  { 

    //toggle LED 

    ... 

 

    //wait until push-button is released 

    while(...); 

  } 

} 

 

Experiment with different delay settings / sample rates and see how fast you need the sample to push-
button in order not to miss a quick push-button press. 

About what sample rate is needed in order not to miss any button presses?  ____________________ 

As an added bonus, the problem with contact bounce is also handled when the delay was added. That 
is because the microcontroller is idling in the delay-loop while the contacts bounce. 



LPCXpresso Experiment Kit - User’s Guide Page 46  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.4  Control Multiple LEDs 

In this experiment you will learn how to control multiple I/O pins simultaneously. More specifically you 
will learn how to control eight LEDs. This experiment builds on the knowledge you have gained from 
the previous experiments. 

7.4.1  Lab 3a: LEDs in Running-One Pattern 

As a start, create the circuit with 8 LEDs and two push-buttons as illustrated in Figure 18 below. Only 
one push-button is used in this experiment but in the two next, two are needed. Have a look at page 4 
in the schematic to get al LED and push-button connections. LED1-LED8 and SW2-SW3 are mounted. 
All resistors are 330 ohm. 

 

Figure 18 – Breadboard Connections for 8 LEDs and two Push-buttons 

In this experiment the 8 LEDs shall be controlled in a running-one pattern. First let the running rate be 
fixed. Use the delay function from previous experiments as the time base. The program structure is 
suggested to be as below. 1) Wait a fixed time, 2) Update the state variable (or counter, which is 
technically also a state) and 3) set outputs according to state. 

//Declare variables 

... 

 

//Initialize pins to be inputs and outputs, 

// set outputs to defined states 

... 

 

//Enter forever loop 

while (1) 

{ 

  //Delay a specified period of time or wait for push-button to be pressed 

  ... 

 

  //Update state/counter 

  ... 



LPCXpresso Experiment Kit - User’s Guide Page 47  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

  //Update LEDs according to state/counter 

  ... 

} 

 

Since there are 8 LEDs is would be suitable to define 8 states or having a counter count between 0-7 
(or 1-8, if that makes more sense). The “set outputs according to state” can be discussed in more 
detail. One method is to first reset all outputs to their inactive state. In our case, that means setting the 
8 LED outputs high (which will turn the LEDs off). After that, the state/counter determines which output 
to set low (turn on one LED). This structure will save code since the resetting to default state is done 
only once. 

Another method, also outlined below, is to set all outputs to correct levels, in each state. This will 
duplicate much code but the program can possibly be easier to understand and maintain.    

//Reset all outputs 

... 

 

//Set only the active output 

switch(...) 

{ 

case ...: ... break;  //Set only active output 

case ...: ... break;  //Set only active output 

case ...: ... break;  //Set only active output 

default: 

} 

 

or 

 

 

//Set and reset the outputs 

switch(...) 

{ 

case ...: ... break;  //Set only active output and reset all others 

case ...: ... break;  //Set only active output and reset all others 

case ...: ... break;  //Set only active output and reset all others 

default: 

} 

 

It is also possible to experiment with other patterns then the running-one. For example, having 3 LEDs 
on simultaneous. 

When the fixed running rate is working, adjust the program so that a push-button press is advancing 
the running LEDs instead of time. Simply replace the delay function with a while-loop that waits for a 
push-button press. 

A little twist on above is to add a timeout functionality. If the push-button is not pressed for 5 seconds, 
the running LEDs should be advanced one step. How to implement that? 

Tip: sample the push-button at a fixed (known) rate. Count how many times sampling is done. If too 
many samples without detecting a press, then a timeout has occurred. Define the timeout with a 
constant (#define ...). 

 

7.4.2  Lab 3b: Control of Running-One Pattern 

The experiment can only be done partially on the breadboard. The goal is to generalize the program 
from Lab 3a. Use two push-buttons for increasing and decreasing the LED running-one speed. Use 
two more push-buttons for controlling the direction of the LED running-one pattern, and finally use one 
push-button for start/stopping the LED flashing. 

All-in-all, five push-buttons are needed for this. Only two are available for mounting on a breadboard. 
Develop the program in steps. First develop the variable speed solution. Then set the speed to a fixed 
value and continue developing the direction control. Then fix the direction and develop the start/stop 



LPCXpresso Experiment Kit - User’s Guide Page 48  

 

 

Copyright 2013 © Embedded Artists AB 

 

control. After these three steps all functionality has been developed. Use the breadboard setup as 
illustrated in Figure 18 above. 

There are five pcb-mounted push-buttons that can be used. These push-buttons are mounted in a 
“joystick” structure so the up/down buttons can for example control the speed. The right/left buttons 
can be used to control the direction and the middle button can control start/stop. 

 

7.4.3  Lab 3c: Rotary Switch Control of Running-One Pattern 

Note that this experiment can only be done in full on the pcb since the rotary switch cannot be 
mounted on the breadboard. However, it is possible to simulate a rotary encoder with two push-buttons 
so the experiment can still be done on the breadboard, if wanted. 

In this experiment, the rotation switch controls the LEDs running-one pattern. Turning the switch one 
step to the left shall advance the LED state on step to the left. Turning the switch one step to the right 
shall advance the LED state on step to the right. 

The rotary switch used can also be called a quadrature rotary encoder. The encoder is named SW6 in 
the schematic and can be found on schematic page 5, see Figure 19 below. 

 

Figure 19 – Quadrature Encoder (SW6) on Schematic page 5 

The encoder outputs two signals, A and B, according to Figure 20 below. The two signals vary over 
four states (A,B): (0,0) (1,0) (1,1) (0,1). Depending on rotation direction the four states are traversed 
from left to right or right to left.   

 

Figure 20 – Quadrature Encoder Output Signals 

A rotation step can be detected by sampling the two inputs and determining what the new state is. If 
this new state is same as the current one, no rotation has occurred. However if there is a difference, 
then a rotation has been detected. If for example the current state is (A,B)=(1,0) and the new state is 
(1,1) the rotation is in the right direction. If the new state is (0,0) the direction is instead to the left. 

Another method to detect rotations is to detect negative edges on signal A. The level on signal B (high 
or low) at this point in time determines the direction. Position (2) in Figure 20 above represents the 
counterclockwise direction (B is low) and (1) represents the clockwise direction (B is high). 

How to detect a negative edge on signal A? 

Tip: When sampling input A, compare with previous sample. If old sample is high and new sample is 
low then a negative edge has occurred. 



LPCXpresso Experiment Kit - User’s Guide Page 49  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.5  Print Messages 

So far the microcontroller has had limited possibilities to communicate with the user. Technically it 
would have been possible to communicate information via the Morse code experiments (via a LED or a 
buzzer) but it is not a very user friendly method and it would take time to communicate longer 
messages. 

In this experiment you will learn how to print messages from the program in the LPCXpresso IDE. No 
breadboard work is needed for these experiments. The LPCXpresso IDE has support for something 
called Semihosting. It is a term from ARM that indicates that part of the functionality is carried out by 
the host. The host in this case is the PC, i.e., the LPCXpresso IDE. It is a very useful debug tool for 
small systems that do not have a dedicated communication channel for outputting debug information. 

It is very easy to enable Semihosting in a project. Figure 21 below indicates the project setting that is 
needed to be carried out. Basically it is an instruction to use a special C runtime library. A library that 
directs printf()-output to the LPCXpresso IDE. 

 

Figure 21 – Selecting Semihosting C Library 

7.5.1  Lab 4a: Semihosting and printf() 

In this experiment you will learn how to print messages from the LPC111x microcontroller to the 
console window in the LPCXpresso IDE. The code below outlines what is needed in order to use 
printf(). Figure 22 below illustrates how the console window looks like when executing this code. 

//Include needed libraries 

#include<stdio.h> 

 

int main(void) 

{ 

  printf(“\nThis is a first test...\n”); 

  printf(“that semihosting and printf() works - and it does!”); 

 

  while(1) 

    ; 

 

  return 0; 

} 

 

1) Right-click on 
project root and select 
“Properties” 

2) Select “C/C++ Build” 

3) Select “Settings” 

4) Select “Target” 

5) Select “Redlib (semihost)” 

6) Confirm selection 



LPCXpresso Experiment Kit - User’s Guide Page 50  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

 

Figure 22 – Semihosting Console Output 

Create a program that determines the Endianness of the microcontroller and prints the result. Assume 
we have a 32-bit number: 0x0AC0FFEE in hexadecimal notation. The table below illustrates how the 
bytes are stored differently between a big and little Endian system. 

Memory address n n+1 n+2 n+3 

Big-endian 0x0A 0xC0 0xFF 0xEE 

Little-endian 0xEE 0xFF 0xC0 0x0A 

 

Now think of a solution how to test this. 

Tip: Create an unsigned int-pointer and an unsigned char-pointer. Let these pointers point to the same 
unsigned int-variable. Write a value in the unsigned int-variable with the unsigned int-pointer. Then 
read out the four parts via the unsigned char-pointer. 

What Endian does the LPC111x has (little or big endian)? ___________________________ 

 

The printf() function works like normal. It is possible to output strings and general expressions. Verify 
that this works. 

Note that Semihosting affects code execution performance severely. Every time a data transfer takes 
place, the execution of the program stops during the transfer. The microcontroller cannot do anything 
useful whilst waiting on each transfer to complete. The blocking time depends on the LPCXpresso IDE 
(and the PC it executes on). Do not use printf() and Semihosting in time critical loops. In the next lab, a 
performance test will be carried out to get a feeling for the transfer rate. 

Adding printf()-functionality to a small embedded system is a trade-off between flexibility and code 
size. The full implementation of printf() is very large, especially if floating point is supported. NXP has 
created an application note that covers basic techniques to reduce the size of code. Many things are 
covered along with a reduced size printf()-implementation that is supported in the LPCXPresso IDE. 
The application note is named: AN10963: Reducing code size for LPC11XX with LPCXpresso 

 

 

 

 

 

 

 



LPCXpresso Experiment Kit - User’s Guide Page 51  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.5.2  Lab 4b: Semihosting Performance Test 

In this experiment we will investigate the performance of the Semihosting functionality. Expand the 
while(1)-loop below to increment a loop counter and print the value if this counter every iteration in the 
loop. Also add a 500ms delay in the loop and verify that the counter increments two times per second 
(by observing the console window in the LPCXpresso IDE). 

//Include needed libraries 

#include<stdio.h> 

 

int main(void) 

{ 

  printf(“\nThis is a performance test...\n”); 

 

  while(1) 

    ; 

 

  return 0; 

} 

 

Now remove the 500ms delay in the loop and check how fast loop counter increments now. It will not 
be very fast. This shows the bottleneck of the Semihosting functionality. It takes time to transfer the 
characters to the LPCXpresso IDE. 

About how many characters can be transferred each second? ____________________ 
Note that this value will differ from PC to PC. 

 

7.5.3  Lab 4c: Printing Events 

In this experiment you shall create a program that writes in the console every time a push-button is 
pressed. For simplicity, use the breadboard setup in Lab 3. 

 

7.5.4  Lab 4d: Reading from the Console 

In this experiment we will learn how the microcontroller can read input from the console in the 
LPCXpresso IDE. The standard library function getchar() is demonstrated. The Semihosting 
implementation has limited functionality when it comes to reading from the console. The calls are 
blocking, meaning that the microcontroller will stay in the library function call until the user (on the 
LPCXpresso IDE side) has entered the characters and hit the enter key. This is not strictly following 
the ANSI-C definition of getchar(), where it should be a non-blocking call (i.e., return immediately even 
if no character was pressed by the user). 

Test the code below.   

 //Include needed libraries 
#include<stdio.h> 

 

int main(void) 

{ 

  printf(“\nThis is a test of getchar()\n”); 

 

  while(1) 

  { 

    int8_t rxChar; 

 

    rxChar = getchar(); 

    printf(“%c”, rxChar); 

  } 

 

  return 0; 

} 

 

 



LPCXpresso Experiment Kit - User’s Guide Page 52  

 

 

Copyright 2013 © Embedded Artists AB 

 

Run the program and enter five characters and then hit enter. What happens? 

_______________________________________________________________________ 

The reason for this is that there is a queue on the LPCXpresso side. Each time getchar() is called om 
the microcontroller side, a character is removed from the queue. 

Also note that text written by the user is printed in green color and text from the target system (i.e., the 
LPC111x) is printed in black color. 

The blocking implementation of the read functions limits the usefulness. A final application would never 
use this functionality. It would simply not be practical to always have the LPCXpresso IDE connected 
to the system. It can however be a very useful functionality when debugging. The application can for 
example ask the user at startup if special settings shall be used. The user can then quickly test several 
settings without having to recompile the application. 

 

As an extra experiment, create a program that reads input from the console and converts it to a 
number. Check that only digits are entered and that the final number is within the range of a 32-bit 
number. 

 



LPCXpresso Experiment Kit - User’s Guide Page 53  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.6  Read an Analog Input 

In this experiment you will learn how to convert an analog signal to a digital value. There is a 10-bit 
ADC (Analog to Digital Converter) on the LPC111x microcontroller. The ADC is described in chapter 
25 - LPC111x/LPC11Cxx ADC in the LPC111x user’s manual. The ADC peripheral needs some 
initialization before it can be used. Also, the pin-muxing needs to set the analog input functionality to 
the pins. There are 8 inputs to the ADC and hence 8 pins that can be initialized. The function outlined 
below initialize the first four pins as analog inputs. The function also initializes the ADC to be ready for 
conversion commands. Check the LPC111x user’s manual and make sure you understand the 
different register initializations below. 

/***************************************************************************** 

** Function name:  ADCInit 

** 

** Descriptions:  initialize ADC channel 

** 

** parameters:   ADC clock rate 

** Returned value:  None 

**  

*****************************************************************************/ 

void ADCInit( uint32_t ADC_Clk ) 

{ 

  /* Disable Power down bit to the ADC block. */   

  LPC_SYSCON->PDRUNCFG &= ~(0x1<<4); 

 

  /* Enable AHB clock to the ADC. */ 

  LPC_SYSCON->SYSAHBCLKCTRL |= (1<<13); 

 

  /* Set pin-mux correct for ADC-IN0, -IN1, -IN2 and –IN3 */ 

  LPC_IOCON->JTAG_TDI_PIO0_11 &= ~0x8F; 

  LPC_IOCON->JTAG_TDI_PIO0_11 |= 0x02;    /* ADC IN0 */ 

  LPC_IOCON->JTAG_TMS_PIO1_0  &= ~0x8F;  

  LPC_IOCON->JTAG_TMS_PIO1_0  |= 0x02;    /* ADC IN1 */ 

  LPC_IOCON->JTAG_TDO_PIO1_1  &= ~0x8F;  

  LPC_IOCON->JTAG_TDO_PIO1_1  |= 0x02;    /* ADC IN2 */ 

  LPC_IOCON->JTAG_nTRST_PIO1_2 &= ~0x8F;  

  LPC_IOCON->JTAG_nTRST_PIO1_2 |= 0x02;   /* ADC IN3 */ 

 

  LPC_ADC->CR = 

    ( 0x01 << 0 ) |   /* SEL=1, select channel 0~7 on ADC0 */ 

                      /* CLKDIV = Fpclk / 1000000 - 1 */ 

    (((SystemCoreClock/LPC_SYSCON->SYSAHBCLKDIV)/ADC_Clk-1)<<8) | 

    ( 0x0 << 16 ) |   /* BURST = 0, no BURST, software controlled */ 

    ( 0x0 << 17 ) |   /* CLKS = 0, 11 clocks/10 bits */ 

    ( 0x0 << 24 ) |   /* START = 0 A/D conversion stops */ 

    ( 0x0 << 27 );    /* EDGE = 0 (CAP/MAT singal falling,trigger A/D conversion) */  

} 

 

7.6.1  Lab 5a: Read Trimming Potentiometer 

In this experiment we shall read the value of analog input #0. There are two trimming potentiometers, 
R7 and R20, on page 4 in the schematic. One of them, R7, is connected to GPIO_11-AIN0 and the 
other one, R20, is connected to GPIO_12-AIN1. These signals correspond to AIN0 and AIN1 on the 
ADC.  The trimming potentiometers are connected to ground and +3.3V in each end. By rotating the 
trimming potentiometers it is possible to adjust the analog voltage to any value between 0V and +3.3V. 
This corresponds exactly to the input range of the ADC. 0V input gives the converted value 0 and 
+3.3V input gives the converted value 1023. 

Figure 23 below shows the schematics around R7. The series resistor, R6 (330ohm), is just for 
protection in case GPIO_11-AIN0 (by mistake) becomes an output. Figure 24 shows the breadboard 
setup for connecting the trimming potentiometer to the LPCXpresso board, pin 15. 

 



LPCXpresso Experiment Kit - User’s Guide Page 54  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Figure 23 – Trimming Potentiometer on Schematic Page 4 

Begin with building the breadboard circuit below. 

 

Figure 24 – Breadboard Connections for Trimming Potentiometer R7 

Create a function for reading the analog value of a specified analog channel. Use constants to define 
the possible channels to convert. 

Tip #1: Read in the ADC chapter in the LPC111x User’s Manual about the CR register. By setting bit 
24 and the channel to convert (in bit 0-7) a conversion is started. 

Tip #2: A conversion takes some time. Check the DONE bit in register AD0GDR or AD0DRx (where x 
is the channel to convert). 



LPCXpresso Experiment Kit - User’s Guide Page 55  

 

 

Copyright 2013 © Embedded Artists AB 

 

Tip #3: After a conversion, the ADC is stopped by resetting bit 24 in the CR register. 

Tip #4: When reading the converted value, note that the register value must be shifted in order to be in 
the interval of 0-1023 (bit 0-9 valid). 

Below is the program structure to use to read the trimming potentiometer value once every 250 ms. 

 //Include needed libraries 
#include<stdio.h> 

... 

 

//Define constants 

#define AIN0   0 

... 

 

//Add ADC functions for initializing and reading values 

... 

 

int32_t main(void) 

{ 

  printf(“\nThis program reads AIN0 repeatedly...\n”); 

 

  //Initialize ADC peripheral and pin-mixing 

  ADCInit(4500000);  //4.5MHz ADC clock 

 

  while(1) 

  { 

    uint16_t analogValue; 

 

    analogValue = getADC(AIN0); 

    printf(“\nAIN0=%d”, analogValue); 

 

    //Delay 250ms 

    ... 

  } 

 

  return 0; 

} 

 

 

You will notice some noise in the converted values. It is not always a stable value. This is quite normal 
to expect in a not-noise-optimized setup that we have with the breadboard and the LPCXpresso board. 
Besides proper hardware design, a method to handle noise is to low-pass filter the converted values. 
Below are two examples of how this can be done. It is a simple first-order filter. The closer to 1 ALFA 
is, the more filter effect is applied (the lower the cut-off frequency will be in the filter). Floating point 
calculations are not to recommend in smaller embedded systems. The execution time will be long for 
these calculations but the biggest problem is typically that the code-size will increase considerable 
when the C-runtime floating point libraries are linked to the program. An integer solution is to 
recommend instead. One example (where ALFA is 0.875) is outlined below. 

//Floating point calculations 

#define ALFA  0.95 

newValue = ALFA*newValue + (1-ALFA)*newSample; 

 

OR 

 

//Integer calculations 

newValue = ((7*newValue) + newSample) >> 3; 

 

Test to filter the samples and observe that they will be more smooth and stable. 

Place the ADC read functions in file adc.c. 

 

 

 



LPCXpresso Experiment Kit - User’s Guide Page 56  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.6.2  Lab 5b: Event Threshold 

Another way to handle noise (varying values from an analog signal) is to introduce threshold handling. 
In this exercise you shall implement a program that reports when the value of an analog signal has 
changed more than a set limit. Create a program that prints the value of AIN0 in the console whenever 
the change in value s large than 2% of the full scale. 

Tip #1: 2% of 1024 steps equals 20,48, which can be rounded down to 20. 

Tip #2: Remember the last reported value and compare the new sample against this value. If you 
compare against the previous samples value then it is theoretically possible to slowly, slowly turn the 
trimming potentiometer without getting any change report event. 

As an extra experiment, create a program that reports changes as already implemented. However, if 
no changes are detected, report the current value once every 5 seconds. 

 

7.6.3  Lab 5c: Read Light Sensor 

In this experiment a light sensor will provide the analog input value (instead of a trimming 
potentiometer).  The sensor, R24, can be found on schematic page 4, as illustrated in Figure 25 below. 
The more light the sensor is exposed to, the lower the resistance becomes. Adjust the program code in 
Lab 5a to read from AIN2 (instead of AIN0) and check what converted values to expect in different light 
conditions. 

What is the range of values between absolute dark and full sunlight? __________________________ 

 

 

Figure 25 – Light Sensor on Schematic Page 4 



LPCXpresso Experiment Kit - User’s Guide Page 57  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Figure 26 – Breadboard Connections for Light Sensor R24 

 

7.6.4  Lab 5d: ADC Noise Test 

As seen and experimenting with in Lab 5a and 5b, here is noise in converted analog values. In this 
experiment we shall investigate the ADC noise in more detail. We shall gather statistical information 
about the noise distribution. 

Create an application that gathers 1 000 000 samples from AIN0 and sort these values according to 
frequency in occurrence.  One solution is to create an array of 1023 32-bit variables and let each of 
these variables be a counter representing the number of times that particular value has been 
observed. This solution would require 4kByte of RAM, which is not a problem. It the resolution would 
have been higher, for example 12 bits then the memory consumption might be too high. An alternative 
solution would be to have a smaller array. Take one sample to determine in which range the vales 
seems to be. Then set a range of for example +-32 around this value. Also have two special counters 
that represent values under or above the edge values. This way it would be simple to check if the 
range accidentally is bad. 

The result shall also be printed in the console in a user-friendly way, so that the result is easy to 
understand for the user. 

What can the possible source of noise be?_____________________________________________ 

 



LPCXpresso Experiment Kit - User’s Guide Page 58  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.7  Pulse Width Modulation 

In this experiment you will learn how to generate a pulse width modulated (PWM) signal. The PWM 
signals will be generated purely in software. A more hardware oriented implementation with the help of 
timers will be investigated in later experiments. Figure 27 below outline the breadboard design that 
allows performing all experiments around PWM signals. Start with building this. All resistors are 330 
ohm. 

 

Figure 27 – Breadboard Connections for PWM Experiments 

 

7.7.1  Lab 6a: PWM Control of a LED 

In this experiment you shall investigate how to generate a signal with a given duty cycle and how the 
LED intensity varies with duty cycle. Figure 28 illustrates the PWM signal structure. The high-time 
defines the duty cycle. It this signals directly drives a LED, the LED will be fully on when duty cycle is 0 
and fully off when the duty cycle is 1 (100%). 

 
 

 

 

 

Figure 28 – PWM Signal 

Below is a code structure that can be used to generate a signal with a specified duty cycle. The loop 
should be repeated as often as possible in order to keep generating the signal. As seen the loop below 
will perform 100 iterations so the resolution of the duty cycle control is 1%. Higher resolution is 

d 
D 

Duty = d/D 

Frequency = 1/D 



LPCXpresso Experiment Kit - User’s Guide Page 59  

 

 

Copyright 2013 © Embedded Artists AB 

 

possible by increasing the number of iterations but the trade-off is lower frequency of the duty cycle. 
This may, or may not, be a problem as we will investigate in later experiments. 

//Set wanted duty cycle 

wantedDutyCycle = ... 

 

//Set output high 

... 

 

//Enter duty cycle generating loop 

for (loopCounter=0; loopCounter<100; loopCounter++) 

{ 

  if (loopCounter == wantedDutyCycle) 

    //Set output low 

    ... 

} 

 

 

Create a program that generate a fixed duty cycle and controls a LED. Define the duty cycle with a 
constant in the program. 

About what frequency does the PWM signal have? _________________________ 
(measure with an oscilloscope of logic analyzer, if possible) 

Draw a diagram of the perceived LED intensity with different duty cycles: 

 

 

 

 

 

 

 

 

 

7.7.2  Lab 6b: PWM Control of a LED, cont. 1 

In this experiment let the value from the trimming potentiometer control the duty cycle. Build on the 
code that was developed in Lab 6a. Read the AIN0 value and set duty cycle between 0-100% 
accordingly. 

As an extra experiment, let the light sensor control the duty cycle. If the room is dark have full intensity 
on the LED and vice versa. 

 

7.7.3  Lab 6c: PWM Control of a LED, cont. 2 

In Lab 6a, the duty cycle frequency was fixed to a relatively high value. In this experiment you shall 
investigate how this frequency affects the LED intensity. At some point (when lowering the frequency) 
you will notice a flickering on the LED. 

Create a program where one trimming potentiometer controls the duty cycle and another trimming 
potentiometer controller the frequency. 

Tip: Add a variable delay in the loop. Let the delay be 1 us, or multiples of it. At 1 us delay, a total of 
100us delay will be added per cycle. This equals 10 kHz. Measure and verify that you get about this 

0    20    40    60    80   100     Duty cycle 

Intensity       Full 

 

 

 

 

None 



LPCXpresso Experiment Kit - User’s Guide Page 60  

 

 

Copyright 2013 © Embedded Artists AB 

 

frequency. It will be slightly lower since more than just delays are performed in the loop. If the delay is 
2 us the frequency will be 5 kHz, if 3 us it will be 3.3 kHz, etc. 

At what frequency does the LED flickering become apparent? __________________________ 

 

7.7.4  Lab 6d: PWM Control of two LEDs 

In this experiment you shall create a program that controls the intensity of two LEDs with the help of 
two trimming potentiometers. One loop shall now control two different PWM signals. As seen it 
becomes more and more complicated to control multiple signals, especially if the signals have different 
frequencies. The microcontroller is also fully occupied with generating the signals. If other work is 
performed, the PWM signals will be affected (not correct duty cycle or frequency). This is why it is 
typically simpler to let a timer generate the PWM signal, without software intervention (other than 
setup). You will investigate this in more detail later on. 

 



LPCXpresso Experiment Kit - User’s Guide Page 61  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.8  Control an RGB-LED 

In this experiment you will learn how to control an RGB-LED. Inside the package of the component 
there are three LEDs, one red, one green and one blue. The common anode is connected to the +3.3V 
supply and series resistors for each LED will limits the current to suitable levels (not irritating) with 
matching lamination from each LED. Note that the series resistor for the red LED is 1.5 kohm and 220 
ohm for the blue and green LEDs. Also note that the current levels are quite low compared to what a 
normal RGB-LED would have.  

 

Figure 29 – RGB-LED, LED10, on Schematic Page 4 

The anode is connected to +3.3V as shown in Figure 29. The pcb has shorted jumper SJ1, while SJ2 
is open. There is an option to connect it to +5V instead but the currently used RGB-LED works well 
with +3.3V supply. Normally the problem is the blue LED, which has high forward voltage drop. 
Typically in the region of 3.5-4.5V. The used RGB-LED has Vf = (about) 3.2V. That is also a reason 
why the current levels are quite low. 

The RGB-LED component is also shown in Figure 29. From left to right the four pins in the picture are: 

 Red-LED cathode (connected to R26) 

 All LEDs anode (connected to +3.3V via SJ1, which is closed) 

 Green-LED cathode (connected to R27) 

 Blue-LED cathode (connected to R28) 

 

7.8.1  Lab 7a: Test RGB-LED 

In this first experiment with an RGB-LED the microcontroller will not be used. We will only use the 
LPCXpresso board to get the +3.3V supply. With three LEDs there are eight combinations. Verify that 
you can create all seven colors (besides black/dark). Insert the resistors in seven different 
combinations as shown in Figure 30 below. 

Which colors do you get? ____________________________________________________________ 



LPCXpresso Experiment Kit - User’s Guide Page 62  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Figure 30 – Breadboard Connections for RGB-LED Testing 

7.8.2  Lab 7b: Control RGB-LED 

In this experiment you shall create a program that can control the intensity of each (of the three) LED. 
Select which color to adjust with a push-button (rotate around the three main colors, red, blue, green, 
at each press) and set intensity level with the trimming potentiometer. 

Base the program on the knowledge developed in previous PWM-related experiments (for example 
Lab 6d). Below is the breadboard design that can be used.  

 

Figure 31 – Breadboard Connections for RGB-LED Experiments 



LPCXpresso Experiment Kit - User’s Guide Page 63  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.9  Control a 7-segment Display 

In this experiment you will learn how to control a 7-segment LED display. The component included in 
the kit actually has two 7-segment digits. More about this further on. First, let’s have a look how a 7-
segment display works. The name 7-segment refers to the seven main segments, labeled A to G. See 
picture below. Sometimes there is also an eighth LED, a dot that is typically labeled (R)DP. It is still 
called a 7-segment LED even though there are actually 8 LEDs. 

 

 

Figure 32 – Dual Digit 7-segment LED 

The dual digit 7-segment LED that is used in this kit has common anodes and are multiplexed as 
outlined in Figure 32. With the 7 LEDs it is possible to create digits 0-9 and the six first characters in 
the alphabet. This makes it possible to display hexadecimal numbers. With the two digit display 
included in the kit it is possible to display a byte value in hexadecimal form (0x00 – 0xFF). 

 

Figure 33 – All Hexadecimal Digits 

There are other types of LED displays. See the picture below. The 7-segment display is the simplest. 
There are also 14- and 16-segment displays. With these it is possible to display all letters in the 
alphabet. There are also matrix displays in different sizes. The 5x7 formation is the smallest to get 
reasonable readable digits. The benefit with LED matrixes is that graphics can also be displayed. 



LPCXpresso Experiment Kit - User’s Guide Page 64  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

 Figure 34 – Different LED Displays 

7.9.1  Lab 8a: Test 7-segment Display 

In this first experiment with a 7-segment display the microcontroller will not be used. We will only use 
the LPCXpresso board to get the +3.3V supply. Verify that you can turn on each segment of the 
display, by moving cables on the breadboard. The picture below illustrates the first breadboard setup 
with the display. Note that the picture of the dual digit 7-segment display we have is not correct in the 
picture below. In reality, the digits are turned 90 degrees and have two digits. There are however 10 
pins on the component, just as shown below. 

 

Figure 35 – Breadboard Connections for 7-segment Display Testing 

Also verify that you can select with digit, of the two, to control. When working with digit #1, pin 9 shall 
be connected to +3.3V and when working with digit #2, pin 4 shall be connected to +3.3V. Both pin 4 
and 9 shall never be connected to +3.3V at the same time. When working with both digits they must be 
time multiplexed. Half of the time, digit #1 is on and the other half, digit #2 is on. More about this in 
later experiments. 

 

7.9.2  Lab 8b: Control 7-segment Display 

In this experiment you shall control one digit of the 7-segment LED display with the microcontroller. We 
will use eight outputs to directly control each segment of the display. The anode of digit #1 will be 
connected directly to +3.3V while the anode for the second digit is left unconnected. As we have done 
before, the breadboard setup is prepared for the next experiments also. We will for example not use 
the trimming potentiometer in this experiment. 



LPCXpresso Experiment Kit - User’s Guide Page 65  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Figure 36 – Breadboard Connections for 7-segment Display 

The same eight outputs are used as in the experiments with the 8 running LEDs, except for LED4 and 
LED5: 

 LED1 (GPIO_4-LED-SSEL) corresponds to segment A 

 LED2 (GPIO_8-LED-SSEL) corresponds to segment B 

 LED3 (GPIO_9-LED-SSEL) corresponds to segment C 

 GPIO_36 controls segment D 

 GPIO_37 controls segment E 

 LED6 (GPIO_23-LED) corresponds to segment F 

 LED7 (GPIO_22-LED) corresponds to segment G 

 LED8 (GPIO_21-LED) corresponds to segment DP 

Create a program that increment a digit, 0-9 each second. It shall roll-over to 0 when 9 is reached. Let 
the dot LED light for 100 ms after an increment. 

A suitable program structure is to create a subroutine that takes a number (0-9) as input and sets the 
appropriate segment outputs for each input value. 

As a variation to above, modify the code so that every time you press the push-button the number is 
incremented. 

Another variation is to create a program that creates a “running one” segment in a circular structure 
(segment A->B->C->D->E->F->A, etc.). 

 



LPCXpresso Experiment Kit - User’s Guide Page 66  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.9.3  Lab 8c: Control 7-segment Display, cont. 

In this experiment you shall present the value on ADC input #0 on one digit in the display. When 
turning the trimming potentiometer a value between 0 and 1023 will be read (10 bit resolution). This 
value shall be converted to a number between 0 and 9. One obvious conversion is (ADC value / 1024) 
* 10. In theory this conversion is correct but since we are working with integer values the term (ADC 
value / 1024) will always be 0. By rewriting it as (ADC value * 10) / 1024 the precision will be kept. 
Assuming that the calculations are done on 16-bit variables, the calculation of (ADC value * 10) is still 
within 16-bits of precision so no overflow will occur. 

The translation (ADC value * 10) / 1024 works perfect for presenting the value 0-9. Consider however 
how a function to present the value 0-10 would have looked like. Figure 37 present the proposed 
conversion function (in black) and a function that would work well for the range 0-10 (in red). 

 

 

 

 

 

 

 

 

 

 

Figure 37 – Conversion Function 

 It would be a good program structure to place the conversion function in a separate subroutine. 

 

7.9.4  Lab 8d: Control Dual Digit 7-segment Display 

In this experiment you will create a time multiplexed control of the two digits. On the schematic there 
are two PNP-transistors to control the anodes of the two digits. A microcontroller output cannot supply 
enough current to directly drive the anodes. Therefore the PNP transistors are needed. Pulling the 
respective GPIO-pins connected to the base (via series resistors) low will open the transistors and 
hence supply current to the anodes. 

In this experiment we ignore the shift register control of the segments. Instead we continue using the 
direct GPIO control of each segment from the previous experiments. In the following experiment the 
shift register will be used. 

0 1023      ADC input value 
value 

9 

1 
0 

Output value 

(ADC value * 10) / 1024 

((ADC value + offset) * 10 / 
1024), where 
offset = 0.5*1024/10 



LPCXpresso Experiment Kit - User’s Guide Page 67  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Figure 38 – 7-segment Display, LED9, on Schematic Page 4 

 

 

Figure 39 – Breadboard Connections for Dual Digit 7-segment Display 



LPCXpresso Experiment Kit - User’s Guide Page 68  

 

 

Copyright 2013 © Embedded Artists AB 

 

The suggested program structure is presented in the code block below. 

//Time multiplexed loop for controlling two 7-segment digits 

while (1) 

{ 

  //Calculate value to present on display, e.g. read ADC input #0 

  ... 

 

  //Disconnect anode of digit #2 and reset segment outputs 

  ... 

 

  //Connect anode of digit #1 to +3.3V 

  ... 

 

  //Output value on digit #1 (control segment outputs) 

  ... 

 

  //Wait 5ms 

  ... 

 

  //Disconnect anode of digit #1 and reset segment outputs 

  ... 

 

  //Connect anode of digit #2 to +3.3V 

  ... 

 

  //Output value on digit #2 (control segment outputs) 

  ... 

 

  //Wait 5ms 

  ... 

} 

 

Implement the time multiplexed control above and create a program just like on the previous 
experiment that presents the value of analog input #0 – not on one digit (0-9) but on two digits (0-99). 
Adjust the conversion function accordingly. 

 

7.9.5  Lab 8e: Control 7-segment Display via Shift Register 

In this experiment we shall use a shift register to control the LED segments. This is the circuit that is 
drawn in the schematic and designed on the pcb. The idea is to use a serial bus (called SPI) but in this 
experiment we will not use this bus. That is for a later experiment. Instead you shall emulate the serial 
bus with GPIO operations. Three signals shall be controlled, called SSEL, SCK and MOSI. These are 
connected to GPIO_4, GPIO_3 and GPIO_1, respectively. Figure 40 illustrates the timing of the 
signals. It is the signal MOSI that outputs the different segment values. The SCK signal clocks in the 
value of the MOSI signal on its rising edge. Signal SSEL shall be low during the clock-in process. 
When SSEL goes high, the value on the shift register is transferred to the outputs of the shift register. 
Check the datasheet of the shift register, 74HC595 for details about the shift register operation. Note 
the order of the bits on the MOSI signals. First the DP bit shall be output, and then segment G, etc. A 
zero will turn the segment on and a one will turn it off. 
 

 

 

 

 

 

 

Figure 40 – SPI Shift Register Communication 

DP            G               F              E               D             C               B               A 

SSEL 

 
SCK 

 

MOSI 



LPCXpresso Experiment Kit - User’s Guide Page 69  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

 

Figure 41 – 7-segment Display, LED9, with Shift Register on Schematic Page 4 

 

Figure 42 – Breadboard Connections for Dual Digit 7-segment Display with Shift Register 

 

 

 



LPCXpresso Experiment Kit - User’s Guide Page 70  

 

 

Copyright 2013 © Embedded Artists AB 

 

Create a subroutine for updating the shift register. Let the subroutine take an 8-bit variable as input, 
where bit 0 represents segment A, bit 1 segment B, etc. The suggested structure of the subroutine is 
presented in the code block below. 

void updateShiftReg( uint8_t segments ) 

{ 

  uint8_t bitCnt; 

 

  //Pull SCK and MOSI low, pull SSEL low 

  ... 

 

  //wait 1us 

  ... 

 

  //Loop through all eight bits 

  for (bitCnt = 0; bitCnt < 8; bitCnt++) 

  { 

    //output MOSI value (bit 7 of “segments”) 

    ... 

 

    //wait 1us 

    ... 

 

    //pull SCK high 

    ... 

 

    //wait 1us 

    ... 

 

    //pull SCK low 

    ... 

 

   //shift “segments” 

    segments = segments << 1; 

  } 

 

  //Pull SSEL high 

  ... 

} 

 

The suggested delay values are quite small (1us). They can be smaller according to the 74HC595 
datasheet, but for simplicity you can use 1us. The previous delay function created had a resolution of 
1ms. Update this function so that it is possible to also have smaller values in the microsecond region. 

Finally create a look-up table for getting the segment values given a number between 0 and 9. 

 

 

 



LPCXpresso Experiment Kit - User’s Guide Page 71  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.10  Work with a Timer 

In this experiment you will learn how to work with a hardware timer. 

7.10.1  Lab 9a: Create Exact Delay Function 

In earlier experiments a delay loop has been used to create delays. This is not a good solution for two 
reasons. First, the processor will be fully occupied looping and cannot do any other useful work and it 
results in unnecessary power consumption.  Secondly, if something interrupts the processor the delay 
length will no longer be correct. 

In this experiment a more accurate delay function shall be created. The processor will still be idling 
waiting for the delay to elapse. Later on, when we explore interrupts, we will create a timer functionality 
that is more universal and power efficient. 

Have a look in chapter 20 -32-bit counter/timer CT32B0/1 in the LPC111x user’s manual for a 
description of the how the 32-bit timers works. Note that chapter 21 describes the same timer for the 
LPC1115 (the XL device family) but for our purposes the timers are identical in the LPC111x family. 

A timer can be quite complicated since it can be used for creating PWM signals and capturing external 
events (with time stamps) and other, more or less advanced functions. 

The principle to use a timer as delay function is as follows: 

1. Setup and start the timer to count up from zero to a set value. The set value is calculated as: 
 “time to delay” / “count clock period”. The timer counts up/increments. 

2. Wait until timer reaches the match value (a bit is then typically set in a status register). 

The subroutine below implements the principles outlined above. Study the code and read in the user’s 
manual to understand how the code works and in what way the timer is used. 

/***************************************************************************** 

** Function name:  delayMS 

** 

** Descriptions:   Start the timer delay in milliseconds until elapsed 

**                 32-bit timer #0 is used 

** 

** Parameters:     Delay value in millisecond 

** 

** Returned value: None 

** 

*****************************************************************************/ 

void delayMS(uint32_t delayInMs) 

{ 

  //setup timer #0 for delay 

  LPC_SYSCON->SYSAHBCLKCTRL |= (1<<9); /* Enable 32-bit timer #0 clock */ 

  LPC_TMR32B0->TCR = 0x02;             /* reset timer */ 

  LPC_TMR32B0->PR  = 0x00;             /* set prescaler to zero */ 

 

  //(SystemCoreClock/LPC_SYSCON->SYSAHBCLKDIV) = 48000000 => Timer clock is 48MHz 

  LPC_TMR32B0->MR0 = delayInMs * ((SystemCoreClock/LPC_SYSCON->SYSAHBCLKDIV)/ 1000); 

 

  LPC_TMR32B0->IR  = 0xff;             /* reset all interrupts (not needed) */ 

  LPC_TMR32B0->MCR = 0x04;             /* stop timer on match */ 

  LPC_TMR32B0->TCR = 0x01;             /* start timer */ 

 

  /* wait until delay time has elapsed */ 

  while (LPC_TMR32B0->TCR & 0x01); 

} 

 

For how long can the function above delay? _______________________________ 

Create a function for microsecond delays, i.e., delayUS(). Let the function check so that there is no 
overflow in time resolution. The MR0 register has 32 bit resolution.  Verify that the functions work 
correctly with a previous experiment, for example Lab 7b. 

Place the timer related functions in file delay.c. This file already has delay functions. 



LPCXpresso Experiment Kit - User’s Guide Page 72  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.11  PWM via a Timer 

In previous experiment PWM signals have been generated via software. In this experiment you will 
learn how to work with a timer to generate PWM signals via hardware. It will free up the microcontroller 
for other tasks since the hardware operates without continuous software control once initialized. 

In section 7.7 - Pulse Width Modulation, the principles for a PWM signal were presented. The signal 
has a cycle period (D, frequency = 1/D) and a duty cycle (d/D), which is the fraction of the cycle the 
signals is high (0-1, 0-100%). 

Have a look in chapter 18 -16-bit counter/timer CT16B0/1 in the LPC111x user’s manual for a 
description of the how the 16-bit timers works. Note that chapter 19 describes the same timer for the 
LPC1115 (the XL device family) but for our purposes the timers are identical in the LPC111x family. 

From earlier experiments we know that a timer can be quite complicated since it can be used for many 
different functions. The principle to use a timer to generate a PWM signal is as follows: 

1. Setup the timer to count up from zero to a match value. This value is the cycle period (D). The 
value is calculated as “cycle period” / “count clock period”. 

2. The counter counts up to this match value (cycle period value) and then restarts from zero. 
This repeats for as long as the timer is enabled. 

3. Setup a match value, which represents the duty cycle (d/D). 

4. When the cycle period counter restarts from zero the PWM output signal is set low. When the 
cycle period counter match the match register, the PWM output signal is set high. 

As seen, there are two separate steps for creating a PWM signal. The first is to create a cycle period 
and the second is to create the duty cycle. The cycle period is typically fixed throughout the application 
execution time and is a design parameter. The duty cycle is, on the other hand, something that 
typically changes during the application execution time. 

If the cycle period is not so critical, just “high-enough”, then a suitable value for the period register can 
be 100. The resolution on the duty cycle is then 1% (100 steps). The match register is set to a value 
between 0 and 100. If higher resolution on the PWM signal is needed the cycle period can for example 
be set to 1000. Then the resolution is 0.1%. 

In general it is no problem to have any value in the period register. The value in the match register is 
calculated like this (assuming 0-100% duty cycle as input parameter): 

 Match register = (Cycle register value * (100 – wanted duty cycle)) / 100 

Note the term (100- wanted duty cycle). This is because the PWM signal starts each period as low and 
is set when a match occurs. 

We will work with 16-bit timer #1 to generate two PWM signals. The MAT0 and MAT1 signals are 
pinned out and will be our PWM signals. In the LPC111x user’s manual, chapter 18 we find the 
following important sentence: “In PWM mode, three match registers on CT16B0 and two match 
registers on CT16B1 can be used to provide a single-edge controlled PWM output on the match output 
pins. It is recommended to use the match registers that are not pinned out to control the PWM cycle 
length.” Since MAT0 and MAT1 of 16-bit timer #1 is pinned out and used as external PWM signals we 
select match register 2 as the cycle period register. 

The subroutines below implements the principles outlined above. Study the code and read in the user’s 
manual to understand how the code works and in what way the timer is used to generate the two PWM 
signals. 

 

/***************************************************************************** 

** Function name:  initPWM 

** 

** Descriptions:   Initialize 16-bit timer #1 for PWM generation  



LPCXpresso Experiment Kit - User’s Guide Page 73  

 

 

Copyright 2013 © Embedded Artists AB 

 

** 

** Parameters:     cycleLength: set PWM cycle length in microseconds 

** 

** Returned value: None 

** 

*****************************************************************************/ 

void initPWM(uint16_t cycleLengthInUs) 

{ 

  LPC_SYSCON->SYSAHBCLKCTRL |= (1<<8); /* Enable timer #1 (enable clock to block) */ 

 

  //setup I/O pins to be MAT-outputs 

  LPC_IOCON->PIO1_9   &= ~0x07; 

  LPC_IOCON->PIO1_9   |=  0x01;       /* 16-bit timer#1 MAT0 */ 

  LPC_IOCON->PIO1_10  &= ~0x07; 

  LPC_IOCON->PIO1_10  |=  0x02;       /* 16-bit timer#1 MAT1 */ 

 

  LPC_TMR16B1->TCR = 0x02;            /* reset timer */ 

  /* Set prescaler so that timer counts in us-steps */ 

  /*(SystemCoreClock/LPC_SYSCON->SYSAHBCLKDIV) = 48000000 => Timer clock is 48MHz */ 

  LPC_TMR16B1->PR  = ((SystemCoreClock/LPC_SYSCON->SYSAHBCLKDIV) / 1000000) - 1; 

 

  LPC_TMR16B1->MR2 = cycleLengthInUs; 

 

  //Setup match registers to generate a PWM signal with 0% duty = constant low 

  LPC_TMR16B1->MR0 = LPC_TMR16B1->MR2; 

  LPC_TMR16B1->MR1 = LPC_TMR16B1->MR2; 

 

  LPC_TMR16B1->IR   = 0xff;            /* reset all interrupts (not needed) */ 

  LPC_TMR16B1->MCR  = (1<<7);          /* reset timer on MR2 match */ 

  LPC_TMR16B1->PWMC = (1<<0) | (1<<1); /* Enable PWM mode for MAT0 and MAT1 */  

} 

 

/***************************************************************************** 

** Function name:  startPWM 

** 

** Descriptions:   Start 16-bit timer #1 

** 

** Parameters:     None 

** 

** Returned value: None 

** 

*****************************************************************************/ 

void startPWM(void) 

{ 

  LPC_TMR16B1->TCR = 0x01;  /* start timer (16B1) = start generating PWM signal(s) */ 

} 

 

/***************************************************************************** 

** Function name:  stopPWM 

** 

** Descriptions:   Stop 16-bit timer #1 

** 

** Parameters:     None 

** 

** Returned value: None 

** 

*****************************************************************************/ 

void stopPWM(void) 

{ 

  LPC_TMR16B1->TCR = 0x00;  /* stop timer (16B1) = stop generating PWM signal(s) */ 

} 

 

/***************************************************************************** 

** Function name:  updatePWM 

** 

** Descriptions:   Update the PWM output setting 

** 

** Parameters:     channel: selects with PWM signals to update (0 or 1) 

**                 value:   set duty cycle (a value between 0 and 100) 

** 

** Returned value: None 

** 

*****************************************************************************/ 

void updatePWM( uint8_t channel, uint8_t value) 

{ 



LPCXpresso Experiment Kit - User’s Guide Page 74  

 

 

Copyright 2013 © Embedded Artists AB 

 

  uint32_t matchValue; 

 

  matchValue = (LPC_TMR16B1->MR2 * (100 – value)) / 100; 

  if (channel == 0) 

    LPC_TMR16B1->MR0 = matchValue; 

  else if (channel == 1) 

    LPC_TMR16B1->MR1 = matchValue; 

} 

 

Place the PWM related functions in file pwm.c. 

 

7.11.1  Lab 10a: Control RGB-LED 

In this experiment we will repeat the experiment in section 7.8 (Control an RGB-LED), specifically 
section Lab 7b: Control RGB-LED. Start by recreating the breadboard hardware in Figure 31 (see page 
62). The red LED is controlled by signal GPIO_28-PWM, the green LED is controlled by signal 
GPIO_29-PWM and the blue LED is controlled by signal GPIO_30-PWM. 

Signal GPIO_28-PWM can carry signal CT16B1_MAT0 (assuming that pin PIO1_9 is configured for 
this) and signal GPIO_29-PWM can carry signal CT16B1_MAT1 (assuming that pin PIO1_10 is 
configured for this). Note that signal GPIO_30-PWM (pin PIO1_11) is not connected to any timer 
match output. It was not possible to design the pcb to allow this. For breadboard experiments, it is 
however possible to for example select signal GPIO_2-MISO (pin P0_8) that can carry signal 
CT16B0_MAT0. Note that this is timer #0 (and not timer #1 as the code above configures). 

Either you generate the third PWM signal in software (as we have done before) or you create functions 
for generating PWM signals from timer #0 also. In the latter case the breadboard connections must be 
updated (connect signal GPIO_30-PWM to pin GPIO_2-MISO). 

Repeat the exact functionality in Lab 7b: Control RGB-LED, i.e., create a program that can control the 
intensity of each (of the three) LED. Select with color to adjust with a push-button (rotate around the 
three main colors, red, blue, green, at each press) and set intensity level with the trimming 
potentiometer. 

Test to blend the three colors and see which colors it is possible to create. 

 

7.11.2  Lab 10b: Buzzer and Melodies 

In this experiment we shall use the buzzer to output tones and in the end a melody. The buzzer self-
resonates with a tone of (about) 2.3kHz. What you will do is to modulate the buzzer (turn it on/off) with 
the frequency of the tone to produce. This tone will be audible as well as the self-resonate tone. 

The code segment below illustrates how to generate a tone. Note the table with constants for 
producing two octaves of notes. Study the code below. 

uint16_t notesInUs[] = { 

        2272, // A - 440 Hz 

        2024, // B - 494 Hz 

        3816, // C - 262 Hz 

        3401, // D - 294 Hz 

        3030, // E - 330 Hz 

        2865, // F - 349 Hz 

        2551, // G - 392 Hz 

        1136, // a - 880 Hz 

        1012, // b - 988 Hz 

        1912, // c - 523 Hz 

        1703, // d - 587 Hz 

        1517, // e - 659 Hz 

        1432, // f - 698 Hz 

        1275, // g - 784 Hz 

}; 

 

/***************************************************************************** 



LPCXpresso Experiment Kit - User’s Guide Page 75  

 

 

Copyright 2013 © Embedded Artists AB 

 

** Function name:  playNote 

** 

** Descriptions:   Initialize 16-bit timer #1 for PWM generation  

** 

** Parameters:     noteInUs:   Period time (in microseconds) for tone 

**                 durationMs: Length of tone (in milliseconds) 

** 

** Returned value: None 

** 

*****************************************************************************/ 

void playNote(uint16_t noteInUs, uint16_t durationMs) 

{ 

  stopPWM(); 

  initPWM(noteInUs);     /* Setup to generate a PWM signal with cycle time = note */ 

  updatePWM(0, 50);      /* Update MAT0 to generate a 50% duty cycle */ 

  startPWM(); 

  delayMS(durationMs);   /* Wait for the duration of the tone */ 

  updatePWM(0, 100);     /* Turn the signal off = signal constant high */ 

} 

 

 

We start with a duty cycle of 50%. Half time the buffer is on and the other half it is off. It is actually 
possible to adjust the volume by varying the duty cycle. The shorter time the buzzer is on, the lower 
the volume is. It is not the duty cycle that controls the tone. It is the cycle time that controls this. 

Recreate the breadboard setup from Figure 17 with one change. Connect the buzzer control to signal 
GPIO_28-PWM, instead of to signal GPIO_7-BUZZ. That way you can create a PWM signal with the 
functions that we created in the previous experiments. 

Create an application that can play a song. In a song, notes can have different duration and there can 
be pauses between notes. Design a system where you can specify songs in a string. Then let the 
application decode this string and play the song. 

 

7.11.3  Lab 10c: Control a Servo Motor 

In order to complete this experiment you need an analog control servo, sometimes just called an RC 
servo, and also an external power supply, 4-6 volt DC (about 1 ampere). These two parts are not 
included in the LPCXpresso Experiment kit, but can easily be bought from electronic components 
distributors and RC (Radio Control) hobby suppliers. 

Servos are used in many different products. The smaller ones we focus on in this experiment are found 
in toys. For example in small robots, rc cars, rc airplanes, etc. There is no unified color scheme for all 
servos for the three wires you connect to: power (+5V), ground and control signal (PWM signal). Check 
the datasheet of the servo that you will be using so you connect to the correct wires. 

 

Figure 43 – Typical Servo 

There are many different types and models but in this experiment we will only focus on how to control 
the position of the servo, which is done via a PWM signal. The cycle period can vary over a range, but 
20 ms is an average value that will work on most servos. The position of the servo is controlled by the 
on-time of the PWM signal. 1.5 ms will place the servo in the middle/neutral position. Increasing the 
on-time to 2 ms will move the position to the right-most position. Decreasing the on-time to 1 ms will 
move the position to the left-most position. Note that the corner values can differ between servos. 



LPCXpresso Experiment Kit - User’s Guide Page 76  

 

 

Copyright 2013 © Embedded Artists AB 

 

Some have 1.25 – 1.75 ms as the range. Others have 0.75 to 2.25 ms. Note that it is not the actual 
duty cycle that controls the position. It is the on-time. For a given/constant cycle period, there is of 
course a direct relation between the on-time and the duty cycle. If the cycle period of 20 ms is chosen, 
the duty cycle shall be varied between 5-10% and 7.5% represents the middle/neutral position. The 
updatePWM() function must be updated to support 0.1% or even 0.01% resolution. 1% will be too 

coarse. Also, the PWM block clock prescaler must be set to 19 (divide by 20) to handle the 20 ms 
period. 

 

 

 
 

 

 

 

Figure 44 – PWM Signal for Servo Control 

See breadboard setup below. Note that an external power supply is needed to power the servo. 4-6 
volt is a typical suitable level for a servo, but always check the datasheet for the specific servo that you 
will be using. If you have soldered the components to the pcb, then there are three servo motor 
connectors, J5, J6 and J8 (see page 5 on the schematic). 

 

1-2 ms 

20 ms 

Left 
Center 

Right 



LPCXpresso Experiment Kit - User’s Guide Page 77  

 

 

Copyright 2013 © Embedded Artists AB 

 

Figure 45 – Breadboard with Servo Motor 



LPCXpresso Experiment Kit - User’s Guide Page 78  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.12  Work with a Serial Bus – SPI 

In this experiment you will learn how to work with the Serial Peripheral Interface Bus, or SPI bus for 
short. It is a synchronous bus meaning that there is an explicit clock signal. SPI builds on the master-
slave concept where one unit is a master and controls the communication. The other end is the slave. 
Four signals are needed for communication in both directions: 

 SCLK: serial clock, driven from the master 

 MOSI: data signal, Master Output, Slave Input, driven from the master 

 MISO: data signal, Master Input, Slave Output, driven from the slave 

 SSEL or SS: Slave Select, driven from the master 

Many slaves can co-exist if there are many slave select (SSEL) signals, see picture below. 

 

Figure 46 – SPI Master and many Slaves 

The protocol defines four different modes (0-3), which have to do with which SCLK edge the data is 
clocked on (rising or falling) and the SCLK inactive state (high or low). Mode 0 will work fine for the SPI 
experiments in this section. 

The master and slave connects the shift registers in a ring, see picture below.  The shift registers are 8 
bits long in the picture but in principle they can be other lengths also. 12-bit and 16-bit lengths are also 
commonly used. The most significant bit (MSB) is typically sent first on the MOSI/MISO data lines. 
Note that this structure results in that the master receives one byte from the slave when one byte is 
sent. 

 

Figure 47 – SPI Master and Slave Connection 



LPCXpresso Experiment Kit - User’s Guide Page 79  

 

 

Copyright 2013 © Embedded Artists AB 

 

There is no specific upper frequency for the SCLK frequency. It depends on the SPI peripheral block in 
the microcontroller, the external SPI slave chip(s) and how far away the master and slaves(s) is/are. 
For breadboard experiments, the SCLK frequency should typically not exceed 1MHz. With proper pcb 
layout a frequency up to 20-30 MHz should not be a problem (assuming the chips involved support this 
frequency). 

For more information about SPI, see http://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus. 

 

There are some so called decoupling capacitors that are not shown on the breadboard setups. 
Decoupling capacitors are added to reduce voltage dips on the supply voltage to integrated circuits. In 
the LPCXpresso Experiment Kit, decoupling capacitors are used on five different locations in the 
schematic; U3/C7, U4/C8, U5/C9, U6/C10, U7/C11. A standard value of 100nF has been selected for 
the capacitor. 

When working on breadboard signal frequencies cannot be too high. A good rule of thumb is to keep 
signal frequencies below 1MHz.  A breadboard is simply not a good place for high frequency 
electronics. The decoupling capacitors can typically be ignored on the breadboard. When soldering the 
components to the pcb it is however recommended to also solder the decoupling capacitors. 

 

Have a look in chapter 14 - LPC111x/LPC11Cxx SPI0/1 with SSP in the LPC111x user’s manual for a 
description of how the SSP block works. SSP (Synchronous Serial Port) is NXP’s peripheral block that 
is capable of SPI communication (plus some other formats that will not be investigated in this 
experiment). It is SSP#0 that we will work with, with the following pinning: 

 GPIO_1-MOSI (PIO0_9) 

 GPIO_2-MISO (PIO0_8) 

 GPIO_3-SCK (PIO2_11) 

Further, we will use GPIO signals for SSEL. More specifically signals GPIO_4-LED-SSEL (PIO0_2) for 
the shift register experiments and GPIO_8-LED-SSEL (PIO2_0) for the e2prom experiment. It is 
possible to use the SSP#0 SSEL signal directly, which is available on PIO0_2, but in order to make the 
code general and supporting multiple SPI slaves we will control the SSEL signals with GPIO signals. 

The code below initializes the SPI interface. Study the code below and read the LPC111x user’s 
manual to understand the different register initialization steps. Especially note that in order to receive 
one byte, one byte has to be transmitted (i.e., one byte is “clocked out”, one is “clocked in” at the same 
time). 

#define FIFOSIZE       8 

 

/* SSP Status register */ 

#define SSPSR_TFE     (1 << 0) 

#define SSPSR_TNF     (1 << 1) 

#define SSPSR_RNE     (1 << 2) 

#define SSPSR_RFF     (1 << 3) 

#define SSPSR_BSY     (1 << 4) 

 

/* SSP CR0 register */ 

#define SSPCR0_DSS    (1 << 0) 

#define SSPCR0_FRF    (1 << 4) 

#define SSPCR0_SPO    (1 << 6) 

#define SSPCR0_SPH    (1 << 7) 

#define SSPCR0_SCR    (1 << 8) 

 

/* SSP CR1 register */ 

#define SSPCR1_LBM    (1 << 0) 

#define SSPCR1_SSE    (1 << 1) 

#define SSPCR1_MS     (1 << 2) 

#define SSPCR1_SOD    (1 << 3) 

 



LPCXpresso Experiment Kit - User’s Guide Page 80  

 

 

Copyright 2013 © Embedded Artists AB 

 

/***************************************************************************** 

** Function name:    SSP0Init 

** 

** Descriptions:     SSP port #0 initialization routine 

**                   Note that GPIO control of SSEL signal is not done, must 

**                   be done separately. 

** 

** parameters:       None 

** Returned value:   None 

** 

*****************************************************************************/ 

void SSP0Init( void ) 

{ 

  uint8_t i, dummy = dummy; 

 

  LPC_SYSCON->PRESETCTRL    |= (0x1<<0);   /* Reset SSP0 block */ 

  LPC_SYSCON->SYSAHBCLKCTRL |= (1<<11);    /* Enable SSP0 block */ 

  LPC_SYSCON->SSP0CLKDIV     = 0x02;       /* Clock to SSP0 block is divided by 2 */ 

                                           /* which will equal 24MHz clock rate */ 

 

  /*  SSP I/O config */ 

  LPC_IOCON->PIO0_8           &= ~0x07; 

  LPC_IOCON->PIO0_8           |= 0x01;     /* SSP0 MISO */ 

  LPC_IOCON->PIO0_9           &= ~0x07;  

  LPC_IOCON->PIO0_9           |= 0x01;     /* SSP0 MOSI */ 

  LPC_IOCON->SCK_LOC           = 0x01;     /* Needed to conf. PIO2_11 as SCLK */ 

  LPC_IOCON->PIO2_11          &= ~0x07;  

  LPC_IOCON->PIO2_11          |= 0x01;     /* SSP0 SCLK */ 

 

  /* SSPCPSR clock prescale register, master mode, minimum divisor is 0x02 */ 

  LPC_SSP0->CPSR = 0x2; 

 

  /* Set DSS data to 8-bit, Frame format SPI, mode #0 (CPOL = 0, CPHA = 0) 

     and SCR is 7, which equals 24MHz / (CPRS*(SCR+1)) = 1500 kHz SCLK frequency */ 

  LPC_SSP0->CR0 = 0x0707; 

 

  /* clear the RxFIFO */ 

  for ( i = 0; i < FIFOSIZE; i++ ) 

    dummy = LPC_SSP0->DR; 

 

  /* Master mode */ 

  LPC_SSP0->CR1 = SSPCR1_SSE; 

} 

 

/***************************************************************************** 

** Function name:    SSP0Send 

** 

** Descriptions:     Send a block of data to the SSP port, the  

**                   first parameter is the buffer pointer, the 2nd  

**                   parameter is the block length. 

** 

** parameters:       buffer pointer, and the block length 

** Returned value:   None 

** 

*****************************************************************************/ 

void SSP0Send( uint8_t *pBuf, uint32_t length ) 

{ 

  uint32_t i; 

  uint8_t dummy = dummy; 

 

  for ( i = 0; i < length; i++ ) 

  { 

    /* Move on only if NOT busy and TX FIFO not full. */ 

    while ( (LPC_SSP0->SR & (SSPSR_TNF|SSPSR_BSY)) != SSPSR_TNF ) 

      ; 

 

    LPC_SSP0->DR = *pBuf; 

    pBuf++; 

 

    while ( (LPC_SSP0->SR & (SSPSR_BSY|SSPSR_RNE)) != SSPSR_RNE ) 

      ; 

 

    /* Whenever a byte is written, MISO FIFO counter increments, Clear FIFO  

       on MISO. Otherwise, when SSP0Receive() is called, previous data byte 

        is left in the FIFO. */ 



LPCXpresso Experiment Kit - User’s Guide Page 81  

 

 

Copyright 2013 © Embedded Artists AB 

 

    dummy = LPC_SSP0->DR; 

  } 

} 

 

/***************************************************************************** 

** Function name:    SSP0Receive 

** Descriptions:     the module will receive a block of data from 

**                   the SSP, the 2nd parameter is the block length. 

** parameters:       buffer pointer, and block length 

** Returned value:   None 

** 

*****************************************************************************/ 

void SSP0Receive( uint8_t *pBuf, uint32_t length ) 

{ 

  uint32_t i; 

 

  for ( i = 0; i < length; i++ ) 

  { 

    /* Write dummy output byte (0xFF) to shift in new byte */ 

    LPC_SSP0->DR = 0xFF; 

 

    /* Wait until the Busy bit is cleared */ 

    while ( (LPC_SSP0->SR & (SSPSR_BSY|SSPSR_RNE)) != SSPSR_RNE ) 

      ; 

 

    *pBuf = LPC_SSP0->DR; 

    pBuf++; 

  } 

} 

 

Place the SPI related functions in file spi.c. 

7.12.1  Lab 11a: Access Shift Register 

In this experiment a shift register, the 74HC595 chip, shall be connected to the SPI bus. A byte will be 
transmitted to the shift register and then read back. The external shift register can be seen as a one-
byte memory. Not very cost effective or high performance but in this experiment focus is on the 
principles and getting to know the SPI bus and the SSP peripheral block. 

As a first part in this exercise, update the SSP0Init() function to take an input parameter to control the 
SCLK frequency. This can be done more, or less, complicated. To keep it simple, just calculate the 
SCR bits in the CR0 register. It will not give full coverage, but at least some range. 

Create an application the send one byte (8 bits) and then reads it back. Verify that the read-back byte 
is correct. Use GPIO_4-LED-SSEL (PIO0_2) as SSEL signal and do not forget to initialize this GPIO 
signal as an output and to also control the signal levels during SPI communication. It shall be high 
when no communication takes place. Pull the signal low before transmitting the byte and then pull it 
high after the transmission. 

Rebuild the breadboard circuit in Lab 8e: Control 7-segment Display via Shift Register (on page 68). 
The 7-segment display is not needed but as preparation for the next experiment it is simplest to rebuild 
it all. The breadboard setup is repeated below with one extra wire – the MISO signal. 



LPCXpresso Experiment Kit - User’s Guide Page 82  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Figure 48 – Breadboard with Shift Register and 7-segment Display, with MISO 

 

7.12.2  Lab 11b: Control 7-segment Display 

In this experiment will shall revisit Lab 8e: Control 7-segment Display via Shift Register (on page 68) 
again. In that experiment the SPI bus was simulated in software. Now the SSP peripheral block shall 
be used for the SPI communication. Refresh your memory of the schematic by looking at Figure 41 
again. Rebuild the breadboard circuit in Figure 42 (which you should have done already in Lab 11a). 
The MISO signal is no longer need since the content of the shift register is of no interest. 

Use GPIO_4-LED-SSEL (PIO0_2) as SSEL signal and do not forget to initialize this GPIO signal as an 
output and to also control the signal levels during SPI communication, just like in the previous Lab. 

 

7.12.3  Lab 11c: Access SPI E2PROM 

In this experiment we will interface the 25LC080 chip, which is a 1024 byte serial E2PROM that directly 
interface the SPI bus. In this experiment signal GPIO_8-LED-SSEL (PIO2_0) is used as SSEL signal. 

Have a look at the datasheet for the 25LC080 chip, for example here: 
http://ww1.microchip.com/downloads/en/DeviceDoc/22151b.pdf or search Microchip’s website if the 
link does not work. 

The 25LC080 chip has a set of instructions. All SPI transmissions begin with the instruction to execute. 
The needed parameters (for the instruction) are then transmitted. The set of instructions are shown in 
the picture below (the picture comes from the 25LC080 datasheet). 

MISO 



LPCXpresso Experiment Kit - User’s Guide Page 83  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Figure 49 –25LC080 Instruction Set 

To read in the memory region, a start address (16-bit address) is transmitted after the READ 
instruction. In total, three bytes are transmitted from the microcontroller to the 25LC080 chip before 
bytes can be read from the memory. As many bytes that are of interest can be read out in the read 
operation. An internal address counter is incremented after each transmitted byte. If the highest 
address is reached (0x03FF for this chip), the address counter rolls over to address 0x0000. Note that 
the SSEL signal (or CS that it is called in the picture below) is low during the complete operation.  

 

Figure 50 –25LC080 Read Sequence 

To write in the memory region, the WRITE instruction is used. Similar to the read operation, a 16-bit 
address is transmitted to set the start address of the write operation. One or many bytes can be written 
at the same time, see the pictures below. 

 

Figure 51 –25LC080 Byte Write Sequence 

Depending on chip version (C or D, check chip package marking for details), the maximum number of 
bytes to write is 16 or 32. Note that all bytes must be in the same page. Physical page boundaries start 
at addresses that are integer multiples of the page buffer size (16 or 32 bytes). It is for example 
allowed to write 7 bytes from address 4 to 10. It is not allowed to write 7 bytes from address 27 to 33 
since a page boundary will then be crossed (true for both 16 and 32 byte page versions). 



LPCXpresso Experiment Kit - User’s Guide Page 84  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Figure 52 –25LC080 Page Write Sequence 

The 25LC080 chip contains a write enable latch. This latch must be set before any write operations are 
allowed. The WREN instruction sets the latch, i.e., enable a write operation. The WRDI operation 
resets the latch, i.e., block write operations. Note that the write enable bit must the set before every 
write operations. It is automatically reset after a successful write operation. 

The WREN and WRDI instructions have no parameters. They are just one-byte instructions send to the 
25LC080 chip. Note that the SSEL/CS signal must be brought high after the transmissions in order for 
the instructions to be actually executed. The WREN instruction is shown in the picture below. The 
WRDI instruction is similar and not shown. 

 

Figure 53 –25LC080 Write Enable Sequence 

There is also a status register. It can be read at any time, even during a write operation. It is possible 
to check the status of a write operation and detect when it is ready. It is also possible to read the write 
enable latch state as well as controlling write protection of blocks of the memory region. Read the 
datasheet for details. 

Study the code below. It contains an initial framework for reading and writing to the 25LC080 chip. 

/* SPI E2PROM command set */ 

#define INST_WREN      0x06    /* MSB A8 is set to 0, simplifying test */ 

#define INST_WRDI      0x04 

#define INST_RDSR      0x05 

#define INST_WRSR      0x01 

#define INST_READ      0x03 

#define INST_WRITE     0x02 



LPCXpresso Experiment Kit - User’s Guide Page 85  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

/* RDSR status bit definition */ 

#define RDSR_RDY       0x01 

#define RDSR_WEN       0x02 

 

#define SSEL_GPIO_8_PORT PORT2 

#define SSEL_GPIO_8_PIN  0 

#define SSEL_HIGH        1 

#define SSEL_LOW         0 

 

/***************************************************************************** 

** Function name:    spiE2PROMread 

** Descriptions:     This function will read bytes from the SPI E2PROM 

** parameters:       address in memory region, buffer pointer and block length 

** Returned value:   None 

** 

*****************************************************************************/ 

void spiE2PROMread( uint16_t address, uint8_t *pBuf, uint32_t length ) 

{ 

  uint8_t buf[3]; 

 

  //pull SSEL/CS low 

  GPIOSetValue(SSEL_GPIO_8_PORT, SSEL_GPIO_8_PIN, SSEL_LOW); 

 

  //output read command and address 

  buf[0] = INST_READ; 

  buf[1] = (address >> 8) & 0xff; 

  buf[2] = address & 0xff; 

  SSP0Send(&buf[0], 3); 

 

  //read bytes from E2PROM 

  SSP0Receive(pBuf, length); 

 

  //pull SSEL/CS high 

  GPIOSetValue(SSEL_GPIO_8_PORT, SSEL_GPIO_8_PIN, SSEL_HIGH); 

} 

 

 

 

/***************************************************************************** 

** Function name:    spiE2PROMwrite 

** Descriptions:     This function will write bytes to the SPI E2PROM 

** parameters:       address in memory region, buffer pointer and block length 

** Returned value:   None 

** 

*****************************************************************************/ 

void spiE2PROMwrite( uint16_t address, uint8_t *pBuf, uint32_t length ) 

{ 

  uint8_t buf[3]; 

 

  //Insert code here to break up large write operation into several 

  //page write operations... 

  //Do not forget to add a 5ms delay after each page write operation! 

 

 

  //pull SSEL/CS low 

  GPIOSetValue(SSEL_GPIO_8_PORT, SSEL_GPIO_8_PIN, SSEL_LOW); 

 

  //output write command and address 

  buf[0] = INST_WRITE; 

  buf[1] = (address >> 8) & 0xff; 

  buf[2] = address & 0xff; 

  SSP0Send(&buf[0], 3); 

 

  //send bytes to write E2PROM 

  SSP0Send(pBuf, length); 

 

  //pull SSEL/CS high 

  GPIOSetValue(SSEL_GPIO_8_PORT, SSEL_GPIO_8_PIN, SSEL_HIGH); 

} 

 

Add functionality in the write operation to check so that no page boundaries are crossed. Even better, 
add functionality to break up a large write block to smaller, correctly addressed page writes. Do not 
forget to add functionality in the write function to set the write enable latch before every write operation. 



LPCXpresso Experiment Kit - User’s Guide Page 86  

 

 

Copyright 2013 © Embedded Artists AB 

 

Create a program that writes a string and reads it back to verify that the write operation was 
successful. Also let the program print the content of the memory locations directly after power-up. By 
doing so it is also possible to verify that the SPI E2PROM is a non-volatile memory that keeps the 
content over a power cycle. Build the breadboard setup below and verify that it is possible to write and 
read in the memory region on the 25LC080 chip. Note that the 330 ohm series resistor on the MISO 
pin (pin 2 of the 25LC080) is not strictly needed. It is a safety precaution in case a faulty or wrong 
program executes on the LPC111x, making the MISO pin an output in the LPC111x. If this happens 
then the signal will have two drivers. This can cause damage to the respective pin drivers on the chips. 

 

Figure 54 – Breadboard with SPI E2PROM 



LPCXpresso Experiment Kit - User’s Guide Page 87  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.13  Work with Interrupts 

In this experiment you will learn how to incorporate interrupts in your program. Interrupts are a 
powerful concept in embedded programming. It is a way to interrupt the normal program execution flow 
to service something else quickly. This “something else” is typically a peripheral block that needs to be 
serviced or it is an external event that needs attention/a reaction. 

There is a functional block in the LPC111x that is called the Nested Vectored Interrupt Controller 
(NVIC). It is an integral part of the Cortex-M0 core. The NVIC can be regarded as a peripheral block, 
but a special one. It is programmed/setup via registers, just like any other peripheral. It supports 32 
interrupt sources and there are four programmable priority levels. Individual interrupts can be masked 
(i.e., disabled) in the NVIC. It is also possible to generate an interrupt via software - writing in a special 
register will trigger the specified interrupt. 

An indication that the NVIC is a special function block is that all information can be found in chapter 
28.6.2 – Nested Vectored Interrupt Controller in the LPC111x user’s manual. This is the chapter that 
contains Cortex-M0 core information. Chapter 6 - LPC111x/LPC11Cxx Nested Vectored Interrupt 
Controller (NVIC) basically only contains a table (Table 54) that lists the different interrupt sources in 
the LPC111x. Almost all of the 32 sources are used. 

Have a look in file LPC11xx.h. It is found in the CMSIS library, in the inc sub-directory. Amongst 

other things, the typedef declaration below is found in this file. It lists the names and numbers of 

the different interrupt sources. 

 

... 

/* Interrupt Number Definition */ 

typedef enum IRQn 

{ 

/******  Cortex-M0 Processor Exceptions Numbers ***********************************/ 

  NonMaskableInt_IRQn      = -14,   /* 2 Non Maskable Interrupt                   */ 

  HardFault_IRQn           = -13,   /* 3 Cortex-M0 Hard Fault Interrupt           */ 

  SVCall_IRQn              = -5,    /* 11 Cortex-M0 SV Call Interrupt             */ 

  PendSV_IRQn              = -2,    /* 14 Cortex-M0 Pend SV Interrupt             */ 

  SysTick_IRQn             = -1,    /* 15 Cortex-M0 System Tick Interrupt         */ 

 

/******  LPC11xx Specific Interrupt Numbers ***************************************/ 

  WAKEUP0_IRQn             = 0,     /* All I/O pins can be used as wakeup source. */ 

  WAKEUP1_IRQn             = 1,     /* There are 13 pins in total for LPC11xx     */ 

  WAKEUP2_IRQn             = 2, 

  WAKEUP3_IRQn             = 3, 

  WAKEUP4_IRQn             = 4, 

  WAKEUP5_IRQn             = 5, 

  WAKEUP6_IRQn             = 6, 

  WAKEUP7_IRQn             = 7, 

  WAKEUP8_IRQn             = 8, 

  WAKEUP9_IRQn             = 9, 

  WAKEUP10_IRQn            = 10, 

  WAKEUP11_IRQn            = 11, 

  WAKEUP12_IRQn            = 12, 

  SSP1_IRQn                = 14,    /* SSP1 Interrupt                             */ 

  I2C_IRQn                 = 15,    /* I2C Interrupt                              */ 

  TIMER_16_0_IRQn          = 16,    /* 16-bit Timer0 Interrupt                    */ 

  TIMER_16_1_IRQn          = 17,    /* 16-bit Timer1 Interrupt                    */ 

  TIMER_32_0_IRQn          = 18,    /* 32-bit Timer0 Interrupt                    */ 

  TIMER_32_1_IRQn          = 19,    /* 32-bit Timer1 Interrupt                    */ 

  SSP0_IRQn                = 20,    /* SSP0 Interrupt                             */ 

  UART_IRQn                = 21,    /* UART Interrupt                             */ 

  ADC_IRQn                 = 24,    /* A/D Converter Interrupt                    */ 

  WDT_IRQn                 = 25,    /* Watchdog timer Interrupt                   */ 

  BOD_IRQn                 = 26,    /* Brown Out Detect(BOD) Interrupt            */ 

  EINT3_IRQn               = 28,    /* External Interrupt 3 Interrupt             */ 

  EINT2_IRQn               = 29,    /* External Interrupt 2 Interrupt             */ 

  EINT1_IRQn               = 30,    /* External Interrupt 1 Interrupt             */ 

  EINT0_IRQn               = 31,    /* External Interrupt 0 Interrupt             */ 

} IRQn_Type; 

... 

 



LPCXpresso Experiment Kit - User’s Guide Page 88  

 

 

Copyright 2013 © Embedded Artists AB 

 

An interrupts source is enabled by the call below. The example enables the 16-bit timer #0 interrupt.  

/* enable 16-bit timer #0 interrupt */ 

NVIC_EnableIRQ(TIMER_16_0_IRQn); 

 

It is also possible to disable an interrupt source. 

/* disable 16-bit timer #0 interrupt */ 

NVIC_DisableIRQ(TIMER_16_0_IRQn); 

 

Normally it is good system design practice to keep the execution time in the interrupts as short as 
possible. The actions that are needed immediately are done in the interrupt service routine (ISR). 
Actions that can wait should be scheduled for later execution in the normal program flow. If it is not 
possible to keep execution time in an ISR short, nested interrupts can be used. Nested interrupts 
means that an interrupt can interrupt another interrupt if it has higher priority. Four priority levels (0-3) 
are supported in the NVIC hardware. The lower the number is, the higher the priority is. Interrupts with 
the same priority cannot interrupt each other. It is possible to set the priority of an interrupt like this: 

/* set priority of specified interrupt 

                      IRQn_Type      , priority (0..3) */ 

void NVIC_SetPriority(TIMER_16_0_IRQn, (prio<<1)|0x01; 

 

Creating an ISR is very simple. The ISR can be written entirely as a C-routine. Have a look in file 

cr_startup_lpc11.c. It is found in the project’s src sub-directory. Amongst other things this 

file contains declarations of the ISR:s, as seen below. The functions are called ISR handlers, but that is 
just another name for the same thing – an interrupt service routine, ISR. 

... 

//***************************************************************************** 

// 

// Forward declaration of the specific IRQ handlers. These are aliased 

// to the IntDefaultHandler, which is a 'forever' loop. When the application 

// defines a handler (with the same name), this will automatically take 

// precedence over these weak definitions 

// 

//***************************************************************************** 

void CAN_IRQHandler       (void) ALIAS(IntDefaultHandler); 

void SSP1_IRQHandler      (void) ALIAS(IntDefaultHandler); 

void I2C_IRQHandler       (void) ALIAS(IntDefaultHandler); 

void TIMER16_0_IRQHandler (void) ALIAS(IntDefaultHandler); 

void TIMER16_1_IRQHandler (void) ALIAS(IntDefaultHandler); 

void TIMER32_0_IRQHandler (void) ALIAS(IntDefaultHandler); 

void TIMER32_1_IRQHandler (void) ALIAS(IntDefaultHandler); 

void SSP0_IRQHandler      (void) ALIAS(IntDefaultHandler); 

void UART_IRQHandler      (void) ALIAS(IntDefaultHandler); 

void ADC_IRQHandler       (void) ALIAS(IntDefaultHandler); 

void WDT_IRQHandler       (void) ALIAS(IntDefaultHandler); 

void BOD_IRQHandler       (void) ALIAS(IntDefaultHandler); 

void PIOINT3_IRQHandler   (void) ALIAS(IntDefaultHandler); 

void PIOINT2_IRQHandler   (void) ALIAS(IntDefaultHandler); 

void PIOINT1_IRQHandler   (void) ALIAS(IntDefaultHandler); 

void PIOINT0_IRQHandler   (void) ALIAS(IntDefaultHandler); 

void WAKEUP_IRQHandler    (void) ALIAS(IntDefaultHandler); 

... 

 

If the user program does not contain declarations of these routines/handlers, then they will default to 

the default interrupt handler (IntDefaultHandler). The exact same name of the routines must 

be used. Below is an example of a custom ISR for 16-bit timer #0. 

/* My own ISR for 16-bit timer #0 */ 

void TIMER16_0_IRQHandler (void) 

{ 

  //Service the interrupt and finish with clearing interrupt 

  ... 

} 

 



LPCXpresso Experiment Kit - User’s Guide Page 89  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.13.1  Lab 12a: Generate IRQ via GPIO 

In this experiment an interrupt will be generated from a GPIO input. Rebuild the basic breadboard 
setup in Figure 13 (on page 39). One LED, controlled by PIO0_2 and one push-button connected to 
PIO1_5. Let the push-button input generate an interrupt on a falling edge (= pushing the key). Toggle 
the LED every time the push-button is pressed. 

Study chapter 12 – L PC111x/LPC11Cxx General Purpose I/O (GPIO) in the LPC111x user’s manual. 
Especially note the GPIO features listed (below is an excerpt from user’s manual): 

 Each individual port pin can serve as an edge or level-sensitive interrupt request. 

 Interrupts can be configured on single falling or rising edges and on both edges. 

 Level-sensitive interrupt pins can be HIGH or LOW-active. 

Register GPIOnIE (where n is the port number) controls if a pin generates an interrupt, or not. If not, it 
is said that the interrupt is masked. Default is that all pin interrupts are masked (inactive). For active 
interrupts (non-masked pins), register GPIOnIS controls if a pin generates edge or level sensitive 
interrupts. Register GPIOnIEV controls if each individual pin interrupt is falling/rising edge active or 
low/high level active. For edge sensitive interrupts, register GPIOnIBE controls if a pin is sensitive to 
one edge (rising or falling) or both. 

Whether to select an edge or level sensitive interrupt depends on the application and how the 
hardware interface works. For the push-button, edge sensitive triggering is suitable since the key press 
occupation is what should be detected. How long the key is pressed is of no concern (in this 
experiment). If the interrupt would have been level sensitive the interrupts routine (ISR) would have 
been activated over and over until the button is no longer pressed. Level sensitive interrupts are 
suitable when the ISR can reset the interrupt condition (by some action). Note that the ISR must clear 
the interrupt condition for edge sensitive interrupts (check the GPIOxIC register). 

Study the code below. It is a framework for the experiment. Note that the main loop does nothing - just 
looping in a forever loop. If power consumption is a concern, it is suitable to place the microcontroller in 
a low power state. Whenever the interrupt condition occurs the microcontroller will wake up and 
execute the ISR and then go back to the low power mode.  

/* Define Interrupt Service Routine for Port #1 */ 

void PIOINT1_IRQHandler (void)    //name of function is predefined 

{ 

  /* toggle LED on PIO0_2 */ 

  ... 

 

  /* clear PIO1_5 falling edge interrupt */ 

  LPC_GPIO1->IC = (1<<5);   //write with bit 5 set to clear interrupt from PIO1_5 

} 

 

void main (void) 

{ 

  /* initialize so that PIO1_5 generate an interrupt (falling edge sensitive) */ 

  ... 

 

  /* enable port #1 interrupt */ 

  NVIC_EnableIRQ(EINT1_IRQn); 

 

  /* enter forever loop – let interrupt handle processing */ 

  while(1) 

    ;      //here is a potential to go into a low power mode 

} 

 

 

Note that due to contact bouncing (inside the pushbutton) sometimes several edges will be detected 
when the pushbutton is pressed. In this experiment this effect is ignored but to in a real system contact 
bounce must be handled properly. 



LPCXpresso Experiment Kit - User’s Guide Page 90  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.13.2  Lab 12b: Timer IRQ 

In this experiment an interrupt will be generated from a timer. In Lab 1c: Delay Function – LED 
Flashing a simple for-loop was used to create exact a delay function. Recreate the experiment and 
flash with a LED. Start with a fixed flash pattern; say 5 Hz. Keep the breadboard setup from the 
previous experiment (see Figure 13, page 39). This experiment is also an extension to Lab 9a: Create 
Exact Delay Function, where a 32-bit timer was user to create exact delay functions. 

The code below illustrated a suitable framework to start from. 

/* Define Interrupt Service Routine for 32-bit timer #1 */ 

void TIMER32_1_IRQHandler(void)    //name of function is predefined 

{ 

  /* toggle LED on PIO0_2 and clear timer interrupt before exiting ISR */ 

  ... 

} 

 

/***************************************************************************** 

** Function name:    main 

** Descriptions:     The main function 

** Parameters:       None 

** Returned value:   None 

** 

*****************************************************************************/ 

void main (void) 

{ 

  /* initialize GPIO as needed */ 

  ... 

 

  /* setup 32-bit timer #1 to generate continuous interrupts every 200 ms = 5 Hz */ 

  ... 

 

  /* enable 32-bit timer #1 interrupt */ 

  NVIC_EnableIRQ(TIMER_32_1_IRQn); 

 

  /* enter forever loop – let interrupt handle processing */ 

  while(1) 

    ; 

} 

 

Now, expand the functionality of the program and design a program that flash with the LED – 50 ms 
(milli seconds) on, 150 ms off, 50 ms on and finally and 750 ms off. Continuously repeat this 1000 ms 
cycle. The suggested program structure is to set the timer interrupt rate high, for example 1000 Hz. 
That is 1 ms between every interrupt. Check which state the LED should have inside the timer ISR. 

/* Define Interrupt Service Routine for 32-bit timer #1 */ 

void TIMER32_1_IRQHandler (void)    //name of function is predefined 

{ 

  /* increment millisecond counter */ 

  msCnt++; 

 

  /* keep counter at one second resolution */ 

  if (msCnt >= 1000) 

    msCnt = 0; 

 

  /* set LED state based on millisecond counter */ 

  if (...) 

  { 

    /* set LED */ 

    ... 

  } 

  else if (...) 

  { 

    /* set LED */ 

    ... 

  } 

  //etc 

  ... 

  //clear timer interrupt 

} 

 



LPCXpresso Experiment Kit - User’s Guide Page 91  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.13.3  Lab 12c: Timer IRQ with Callback 

In this experiment the timer interrupt will call a registered function, called a callback function. It is a 
commonly used program structure that can be very powerful and flexible. 

Create a program that uses a timer callback to control flashing of a LED. Keep the breadboard setup 
from the previous experiments (see Figure 13, page 39). 

Study the code framework below. It outlines how a timer callback functionality can be implemented: 

 A function pointer to the callback function is stored. 

 A timer is setup to generate an interrupt after a specified time. After triggering the interrupt the 
timer stops. 

 When the timer interrupts occurs, the callback function is called. 

/* Declare function pointer (to a void-void function) for the callback function */ 

volatile void (*pCB)(void); 

 

/* Define Interrupt Service Routine for 32-bit timer #1 */ 

void TIMER32_1_IRQHandler (void)    //name of function is predefined 

{ 

  /* check if function pointer is value (not equal to NULL) */ 

  if(pCB != NULL) 

  { 

    /* call function pointer = call callback function */ 

    pCB();   //also valid syntax: (*pCB)(); 

 

    /* invalidate function pointer */ 

    pCB = NULL; 

  } 

 

  //stop timer 

  ... 

 

  //clear timer interrupt 

  ... 

} 

 

/***************************************************************************** 

** Function name:    registerCbAndDelay 

** Descriptions:     This function setup 32-bit timer #1 to generate 

**                   an interrupt after specified time and then call a 

**                   registered callback function. 

** parameters:       delay in ms and callback function pointer 

** Returned value:   None 

** 

*****************************************************************************/ 

void registerCbAndDelay( uint16_t delayInMS, void (*pF)(void)) 

{ 

  /* register callback function */ 

  pCB = pF; 

 

  /* setup timer to fire in ‘delayInMS’ ms */ 

  ... 

 

  /* enable 32-bit timer #1 interrupt */ 

  NVIC_EnableIRQ(TIMER_32_1_IRQn); 

} 

 

/***************************************************************************** 

** Function name:    toggleLED 

** Descriptions:     This function toggles output PIO0_2 

** Parameters:       None 

** Returned value:   None 

** 

*****************************************************************************/ 

void toggleLED(void) 

{ 

  /* toggle LED on PIO0_2 */ 

  ... 

} 

 



LPCXpresso Experiment Kit - User’s Guide Page 92  

 

 

Copyright 2013 © Embedded Artists AB 

 

/***************************************************************************** 

** Function name:    main 

** Descriptions:     The main function 

** Parameters:       None 

** Returned value:   None 

** 

*****************************************************************************/ 

void main (void) 

{ 

  /* initialize GPIO as needed */ 

  ... 

 

  /* enter forever loop – let interrupt handle processing */ 

  while(1) 

  { 

    /* register callback (to toggle LED) in 200ms */ 

    registerCbAndDelay(200, &toggleLED); 

 

    /* wait until callback has been called */ 

    while (pCB != NULL) 

      ; 

  } 

} 

 

Place the callback related functions in file timerCB.c. 

The structure above is not perfect since the caller must wait until the callback has been executed 
before the next callback can be registered and started. To make it more user friendly, extend the 
callback timer functionality to also support repeated calls. When registering a new callback one 
parameter/flag tells if it is a one-time callback or a repeated callback. A new function is then also 
needed to stop a repeated callback. It would be good programming practice to let the function return 
an error if there is already an active callback in the system. 

A much more flexible and robust framework would allow multiple callbacks to be registered and 
handled accordingly. Such a framework is however a lot more work and out of the scope for this 
experiment. 

 

7.13.4  Lab 12d: Nested Interrupts 

In this experiment the effect of nested interrupts will be investigated. This experiment is a little 
combination of Lab 12a and Lab 12b. Use the same breadboard setup as in these experiments, one 
LED and one push-button. 

Setup a repeated timer interrupt to toggle the LED with 5Hz rate. Whenever the push-button is pressed 
enter a 2 second delay loop (of the old type) in the interrupt service routine. First observe the LED 
flashing.  

Press the push-button. What happens? _______________________________________________ 

Yes, the LED will stop toggle for 2 seconds whenever the push-button is pressed. It is exactly what can 
be expected since the push-button (port #1) ISR will block the timer interrupt. This is an excellent 
illustration that time spent in an ISR should be kept to a minimum in order not to block other ISR:s from 
being executed. 

Now explicitly set the priority of both ISR:s. Set the priority of the timer ISR higher than for the GPIO 
ISR. Remember that a lower number (range is 0-3) means higher priority. 

Verify that the LED now continues flashing whenever the push-button is pressed. 

What is the default priority for all interrupts? __________________________ 

There is a function call for reading the priority also. Search in the file core_cm0.h after this 

function. 

 



LPCXpresso Experiment Kit - User’s Guide Page 93  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

7.13.5  Lab 12e: Control Dual Digit 7-segment Display 

This experiment revisits Lab 8d: Control Dual Digit 7-segment Display and Lab 11b: Control 7-segment 
Display. By combining the knowledge from all previous experiments it is now possible to create a 
system that is quite close to a how this would have been solved in a real system. 

Setup a repetitive timer interrupt, say 500 Hz (2 ms between each interrupt). Let the timer ISR update 
the dual 7-segment display. The ISR alternates which digit that is updated. 

The main program just set up the timer ISR and writes the segment outputs in a global variable (that 
the timer ISR can read when updating the digits). 

The suggested program structure for the timer ISR is presented in the code block below. 

/* Declare variable to store digit outputs */ 

volatile uint8_t digitSegments[2]; 

 

/* Define Interrupt Service Routine for 32-bit timer #1 */ 

void TIMER32_1_IRQHandler (void)    //name of function is predefined 

{ 

  //counter that indicate active digit (numbered 0 and 1) 

  static uint8_t activeDigit; 

 

  if (activeDigit == 0) 

  { 

    //Disconnect anode of digit #0 (pull control signal high) 

    ... 

 

    //Send segment outputs (via SPI) for digit 1 

    ... 

 

    //Connect anode of digit #1 (pull control signal low) 

    ... 

 

    activeDigit = 1;     

  } 

 

  else 

  { 

    //Disconnect anode of digit #1 (pull control signal high) 

    ... 

 

    //Send segment outputs (via SPI) for digit 0 

    ... 

 

    //Connect anode of digit #0 (pull control signal low) 

    ... 

 

    activeDigit = 0;     

  } 

 

  //clear interrupt 

  ... 

} 

 

 

 

 



LPCXpresso Experiment Kit - User’s Guide Page 94  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.14  Work with a Serial Bus – I2C 

Note that the breadboard cannot be used in these experiments. The chips used are surface 
mounted and these must be soldered to the pcb before starting. 

In this experiment you will learn how to work with the Inter-Integrated Circuit Bus, or I2C bus for short. It 
is a multi-master bus for (relatively) low-speed peripherals. The basic clock frequency is 100 kHz but 
there are newer specifications that support higher speeds, for example 400 kHz that is often 
supported, called Fast-mode (Fm). Higher frequencies of 1 MHz (Fm+), 3.4 MHz (High-speed mode, 
Hs) and 5 MHz (Ultra Fast-mode, UFm) also exist but are less widespread. 

The I2C bus is a synchronous bus meaning that there is an explicit clock signal. It builds on the master-
slave concept where one unit is a master and controls the communication. One slave is addressed on 
the bus and is the other end of the master-slave communication. There can be many masters on the 
bus, but only one active at a time. 

The I2C bus uses two bidirectional open-drain lines pulled up by resistors: 

 SCK: serial clock, the master always generates the clock 

 SDA: serial data, the master generates the data when transmitting to the slave. The slave 
generates the data when transmitting to the master 

The picture below illustrates how many masters and slaves can share one I2C bus. 

 

Figure 55 – I2C Bus 

For more information about I2C, see http://en.wikipedia.org/wiki/I%C2%B2C 
There is a lot of details about the I2C bus that have not been covered in this short overview, like how 
addressing works, how bus arbitration works, how read and write operations work, how acknowledge 
of data works, etc. 

Have a look in chapter 15 - LPC111x/LPC11Cxx I2C-bus controller in the LPC111x user’s manual for a 
description of the how the I2C block works. It is more complicated interface than for the timers and SSP 
peripherals. The basic principle is to send commands to the I2C peripheral block. These commands are 
carried out in the (external) I2C bus and a status is presented as result. Based on the status the I2C 
driver gives the next command. 

It is not recommended to start from scratch and create an I2C driver. Instead the driver supplied from 
NXP will be used, see files i2c.c/i2c.h. Let’s investigate the application program interface (API) 

for this driver. The file i2c.h contains (amongst other declarations) the following function 

declarations: 

 I2CInit() – this function must be called before the I2C driver is used and any I2C 
communication can take place. The function initializes the pins (PIO0_4, PIO0_5) to be I2C 
pins and other necessary initialization. The function has two parameters. The first parameter 
tells if the I2C interface shall be a master or slave interface. In this case it is a master 
interface and no further parameter is needed. In case it is a slave interface, the second 
parameter is the slave address of this interface. 



LPCXpresso Experiment Kit - User’s Guide Page 95  

 

 

Copyright 2013 © Embedded Artists AB 

 

 I2CRead() – this function perform a read operation. The function has three parameters. The 
first is the slave address to communicate with. The second is a buffer pointer to where the 
read data is copied. The third parameter is the number of bytes to read. 

 I2CWrite() – this function perform a write operation. The function has three parameters. The 
first is the slave address to communicate with. The second is a buffer pointer from where to 
get the data to transfer to the slave. The third parameter is the number of bytes to 
write/transfer. 

 

7.14.1  Lab 13a: Solder Surface Mounted Components 

In this Lab the surface mounted components shall be soldered to the PCB, as a preparation for the 
following I2C related experiments. Besides the surface mounted components a few connectors are 
also needed to be soldered for powering and connection to the LPCXpresso LPC111x board. The 
following components shall be soldered (see chapter 4 for pictures of all different components): 

 J1, 2.1mm power jack. This is for allowing an external 5V DC supply to power the board. 

 J2, dual 1x27 pos headers for connection to the LPCXpresso LPC111x board. 

 J17, mini-B USB connector on bottom side as alternative power source 

 Components on schematic page 6 

o Temperature sensor: U6 (LM75), C10 (100nF), R57-R58 (2K) 

o I2C GPIO expander: U7 (PCA9532), C11 (100nF), R43-R56 (2K), LED11-LED18 

Figure 56 illustrates where on the PCB the components shall be soldered. Read chapter 6 for 
information about soldering. In general there are many good tutorials on the Internet on how to solder 
through-hole components as well as surface mounted components. Just search with your favorite 
search engine. 

 

Figure 56 – Surface Mounted Components on the LPCXpresso Experiment Kit PCB 



LPCXpresso Experiment Kit - User’s Guide Page 96  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

7.14.2  Lab 13b: Read LM75 Temperature Sensor 

In this experiment a temperature sensor, LM75, shall be sampled and the temperature presented. It is 
essential to study the LM75 datasheet before writing any code. The LM75 has a simple interface and 
luckily no register initialization is needed before it is possible to read the temperature. It is just a matter 
of reading from the correct register. 

The code below presents two functions. One for reading the temperature and one for writing in 

configuration registers. Complete the last statement in function lm75a_readTemp() to calculate 

the correct temperature. Create a semihosting application that samples the temperature every third 
second and prints the result on the console. 

 

#include “i2c.h” 

 

#define LM75B_I2C_ADDR  0x90 

#define LM75B_REG_TEMP  0x00 

#define LM75B_REG_CMD   0x01 

 

/****************************************************************************** 

 * 

 * Description: 

 *    Read temperature register of LM75B 

 * 

 * Params:  None 

 * Returns: Temperature * 100 in integer format 

 * 

 *****************************************************************************/ 

int32_t lm75b_readTemp(void) 

{ 

  uint8_t cmd, temp[2]; 

  int32_t t = 0; 

 

  cmd = LM75B_REG_TEMP; 

  I2CWrite(LM75B_I2C_ADDR, &cmd,     1); 

  I2CRead( LM75B_I2C_ADDR, &temp[0], 2); 

 

  /* 11 MSB bits used. Celsius is calculated as Temp data * 1/8 */ 

  t = ((temp[0] << 8) | (temp[1])); 

 

  /* Return temperature times 100, e.g., in 0.01 degrees */ 

  return ...; 

} 

 

/****************************************************************************** 

 * 

 * Description: 

 *    Write to config register of LM75B 

 * 

 * Params:  Config byte 

 * Returns: None 

 * 

 *****************************************************************************/ 

void lm75b_config(int8_t config) 

{ 

  uint8_t cmd[2]; 

 

  cmd[0] = LM75B_REG_CMD; 

  cmd[1] = config; 

 

  I2CWrite(LM75B_I2C_ADDR, &cmd[0], 2); 

} 

 

/***************************************************************************** 

** Function name:    main 

** Descriptions:     The main function 

** Parameters:       None 

** Returned value:   None 

** 



LPCXpresso Experiment Kit - User’s Guide Page 97  

 

 

Copyright 2013 © Embedded Artists AB 

 

*****************************************************************************/ 

void main (void) 

{ 

  /* initialize I2C as needed */ 

  I2CInit( I2CMASTER, 0 ); 

 

  /* enter forever loop */ 

  while(1) 

  { 

    /* read temperature and print result */ 

    ... 

 

    /* wait 3 seconds */ 

    ... 

  } 

} 

 

Place the LM75 related code in file lm75.c. 

 

7.14.3  Lab 13c: Control LEDs via PCA9532 

In this experiment a GPIO expansion chip, PCA9532, shall be used. The chip can also generate PWM 
waveforms to for example dim LEDs. It is essential to study the PCA9532 datasheet before writing any 
code. The PCA9532 chip has a more complex interface than the LM75. More registers must be 
controlled. There are 16 I/O pins and 10 registers in the chip: 

 Two registers are used for reading the 16 inputs (two bytes). 

 There are two PWM generators in the chip. Two registers are needed to control each 
generator, so four registers in total for this. 

 Four registers are used to control the 16 pins if they are outputs. 2 bits per pin, which means 
that one byte can control 4 pins – resulting in four registers to control 16 pins. A pin can have 
one of the following four states: 

o Actively driven low. 

o High impedance where the pin is typically driven high by an external pullup resistor. 
The pin can also be an input in this state. 

o Driven by PWM generator #0, alternating between actively driven low and high-
impedance.  

o Driven by PWM generator #1. 

The external LEDs are connected via the cathode to the PCA9532 chip. This is because the chip can 
only sink current. 

Below is a code framework for controlling the 16 outputs via function pca9532_setLeds(...).  

#define PCA9532_I2C_ADDR     0xC0 

 

#define PCA9532_INPUT0 0x00 

#define PCA9532_INPUT1 0x01 

#define PCA9532_PSC0   0x02 

#define PCA9532_PWM0   0x03 

#define PCA9532_PSC1   0x04 

#define PCA9532_PWM1   0x05 

#define PCA9532_LS0    0x06 

#define PCA9532_LS1    0x07 

#define PCA9532_LS2    0x08 

#define PCA9532_LS3    0x09 

 

#define PCA9532_AUTO_INC 0x10 

 

/****************************************************************************** 

 * Defines and typedefs 

 *****************************************************************************/ 



LPCXpresso Experiment Kit - User’s Guide Page 98  

 

 

Copyright 2013 © Embedded Artists AB 

 

#define LS_MODE_ON     0x01 

#define LS_MODE_BLINK0 0x02 

#define LS_MODE_BLINK1 0x03 

 

/****************************************************************************** 

 * Local variables 

 *****************************************************************************/ 

static uint16_t blink0Shadow = 0; 

static uint16_t blink1Shadow = 0; 

static uint16_t ledStateShadow = 0; 

 

/****************************************************************************** 

 * Local Functions 

 *****************************************************************************/ 

static void setLsStates(uint16_t states, uint8_t* ls, uint8_t mode) 

{ 

#define IS_LED_SET(bit, x) ( ( ((x) & (bit)) != 0 ) ? 1 : 0 ) 

 

    int i = 0; 

 

    for (i = 0; i < 4; i++) { 

        ls[i] |= ( (IS_LED_SET(0x0001, states)*mode << 0) 

                 | (IS_LED_SET(0x0002, states)*mode << 2) 

                 | (IS_LED_SET(0x0004, states)*mode << 4) 

                 | (IS_LED_SET(0x0008, states)*mode << 6) ); 

        states >>= 4; 

    } 

} 

 

static void setLeds(void) 

{ 

    uint8_t buf[5]; 

    uint8_t ls[4] = {0,0,0,0}; 

    uint16_t states = ledStateShadow; 

 

    /* LEDs in On/Off state */ 

    setLsStates(states, ls, LS_MODE_ON); 

 

    /* set the LEDs that should blink */ 

    setLsStates(blink0Shadow, ls, LS_MODE_BLINK0); 

    setLsStates(blink1Shadow, ls, LS_MODE_BLINK1); 

 

    buf[0] = PCA9532_LS0 | PCA9532_AUTO_INC; 

    buf[1] = ls[0]; 

    buf[2] = ls[1]; 

    buf[3] = ls[2]; 

    buf[4] = ls[3]; 

    I2CWrite(PCA9532_I2C_ADDR, buf, 5); 

} 

 

/****************************************************************************** 

 * Public Functions 

 *****************************************************************************/ 

 

/****************************************************************************** 

 * 

 * Description: 

 *    Set LED states (on or off). 

 * 

 * Params: 

 *    [in]  ledOnMask  - The LEDs that should be turned on. This mask has 

 *                       priority over ledOffMask 

 *    [in]  ledOffMask - The LEDs that should be turned off. 

 * 

 *****************************************************************************/ 

void pca9532_setLeds (uint16_t ledOnMask, uint16_t ledOffMask) 

{ 

    /* turn off leds */ 

    ledStateShadow &= (~(ledOffMask) & 0xffff); 

 

    /* ledOnMask has priority over ledOffMask */ 

    ledStateShadow |= ledOnMask; 

 

    /* turn off blinking */ 

    blink0Shadow &= (~(ledOffMask) & 0xffff); 



LPCXpresso Experiment Kit - User’s Guide Page 99  

 

 

Copyright 2013 © Embedded Artists AB 

 

    blink1Shadow &= (~(ledOffMask) & 0xffff); 

 

    setLeds(); 

} 

 

Add functionality to control the PWM generators and functions to direct the PWM signals to specific 
pins. Place the PCA9532 related code in file pca9532.c. 

Create an application that performs a running one pattern on the eight connect LEDs.   

Also create a program that can demonstrate dimming on the LEDs with the help of the PWM 
generators on the PCA9532 chip. 

 



LPCXpresso Experiment Kit - User’s Guide Page 100  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.15  Work with a Serial Bus – UART 

In this experiment you will learn how to work with the Universal Asynchronous Receiver/Transmitter, or 
UART for short. The term asynchronous refers to the fact that no explicit clock signal is transmitted. 
The transmitter and receiver must agree beforehand on the bit rate, i.e., how long time a transmitted bit 
shall take. The idle state (no transmission) is a high signal. Transmission begins with a start bit, which 
is low. The negative edge is detected by the receiver and 1.5 bit periods after this, bit sampling begins. 
Eight data bits are sampled. The least significant bit (LSB) is typically transmitted first. An optional 
parity bit is then transmitted (for error checking of the data bits). Often this bit is omitted if the 
transmission channel is assumed to be noise free or if there are error checking higher up in the 
protocol layers. The transmission is ended by a stop bit. Typically one bit, but 1.5 and 2 bits are 
sometimes also used. Most common for inter-board communication is 8N1, meaning 8 data bits, no 
parity and one stop bit. 

 

 

 

 

 

 

 

Figure 57 – UART Communication 

On a side note, there are methods to determine the bit rate of a received signal but that is out of scope 
for this experiment.  

An UART channel consists of two signals (besides ground): 

 TXD: transmit data, direction from transmitter to receiver. This is an output. 

 RXD: receive data, direction from transmitter to receiver. This is an input. 

TXD and RXD are crossed between transmitter and receiver, i.e., TXD is connected to RXD and vice 
versa. For more information about asynchronous serial communication, see 
http://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter and 
http://en.wikipedia.org/wiki/Asynchronous_serial_communication. 

Note and understand the difference between the signaling method (asynchronous serial 
communication) and standards of voltage signaling. The signal drawn in Figure 57illustrates the signal 
to/from the UART peripheral inside the LPC111x. It is a 3.3V logic signal. This is common for 
communication between units on the same board, or closely mounted boards. RS232 is a common 
signaling standard with large voltage swings (+- 3-15V) that is used between units that are physically 
apart. RS422 and RS485 are other commonly used signaling standards. 

Communication is normally point-to-point, meaning that a transmitter sends data to one receiver. There 
are signaling standards that also supports network topologies (for example RS422 and RS485). Higher 
protocol layers must then be involved in implementing addressing schemes between the nodes. 

 

Note that this experiment requires a UART-to-USB cable from FTDI (TTL-232R-3V3, Digikey: 768-
1015-ND or Mouser: 895-TTL-232R-3V3). This cable is a bridge between a UART channel and USB 
communication. Via USB it creates a virtual COM port on a PC. The UART communication is tunneled 
over USB to the PC. When plugging in the USB connector on a PC a driver will be installed. See 
FTDI’s installation guides for details how to install the driver for different operating systems: 
http://www.ftdichip.com/Support/Documents/InstallGuides.htm 

Start    D0      D1      D2      D3      D4      D5      D6     D7    Parity  Stop 
  bit    (lsb)                                                                 (msb)    bit       bit 

TXD 

 
Bits 

Sampling 
1.5 bit   1.0 bit  etc. 

Duration of one byte (10-12 bit periods) 

http://it.mouser.com/ProductDetail/FTDI/TTL-232R-3V3/?qs=sGAEpiMZZMvYU0Oh5y3R5sMdbLgwj41z


LPCXpresso Experiment Kit - User’s Guide Page 101  

 

 

Copyright 2013 © Embedded Artists AB 

 

The UART signals from the LPC111x are made available on connector J18, see schematic below. 
Signal GPIO_5-TXD carries the transmitted UART signal and GPIO_6-RXD is the received UART 
signal. The experiments can take place on the pcb or on a breadboard. Resistor R62 has been added 
for protection in case GPIO_6-RXD is programmed (by mistake) as an output. If that would happen, 
R62 limits the currents to safe levels so no output gets damaged. 

 

Figure 58 – J18, D2 and R62 on Schematic Page 7 

Note orientation of the 6 pos connector of the cable. The black cable is positioned on pin 1 and is 
ground. Figure 59 illustrates correct orientation when mounting the cable on the pcb. 

Also note that the cable can actually power the system since the FTDI cable can supply a +5V voltage. 
Diode D2 is included in case supply comes from multiple sources (for example, 2.1mm power jack J1 
or USB connector J17). 

 

Figure 59 – LPCXpresso Experiment Kit PCB with UART-to-USB Cable 



LPCXpresso Experiment Kit - User’s Guide Page 102  

 

 

Copyright 2013 © Embedded Artists AB 

 

On the PC side, a terminal application is needed. A terminal application connects to a COM port and 
displays everything received and also allows sending data from the application (via keyboard and 
sending a file). There are a few good terminal applications: 

 TeraTerm (which is recommended), http://sourceforge.jp/projects/ttssh2/files 

 PuTTY, http:///www.chiark.greenend.org.uk/~sgtatham/putty/ 

 Terminal by Bray, http://sites.google.com/site/braypp/terminal 

 RealTerm, http://sourceforge.net/projects/realterm/files/ 

Download and install the selected terminal application. The next step is to configure the application. 
Typical configuration settings are selecting COM port, setting bit rate (for example 9600 bps), set if 
parity is used and number of stop bits. Flow control is another setting that is common. Select None for 
this setting. Other settings require either additional hardware or software support. 

For TeraTerm, select New Connection in the File menu. Select the COM port that appears when the 
FTDI UART-to-USB cable is connected to the PC. Click OK. The screenshot below illustrates the 
dialog window for setting up a new serial connection. 

 

Figure 60 – TeraTerm Configuration Step 1 

To set the bit rate and other relevant settings for the serial channel, go to Setup menu and select Serial 
Port. A dialog, like illustrated in the screenshot below, opens. Make sure Flow control is set to none. 



LPCXpresso Experiment Kit - User’s Guide Page 103  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Figure 61 – TeraTerm Configuration Step 2 

There are many different settings for how the terminal program shall behave (i.e., interpret received 
characters). Some adjustments might be needed, for example when to start displaying received 
characters on a new line. Under menu Setup, sub-menu Terminal setup it is possible to control these 
things. The screenshot below illustrates the settings possible for when a new-line shall be performed 
on received characters. A common setting is LF, but it also depends on which character the LPC111x 
application outputs. 

 

Figure 62 – TeraTerm Configuration Step 3 



LPCXpresso Experiment Kit - User’s Guide Page 104  

 

 

Copyright 2013 © Embedded Artists AB 

 

Have a look in chapter 13 - LPC111x/LPC11Cxx UART in the LPC111x user’s manual for a description 
of the how the UART block works. The basic principles are the same as for the SPI block – it is a serial 
shift register for transmitting and receiving. The difference is that for the UART block it is more complex 
with for example separate shift registers for transmitting and receiving and more flexibility in setting the 
bit rates. Some features like auto-flow control, auto-baud, modem signaling and RS-485 functionality 
will not be covered by these experiments. 

The transmit signal (TXD) is available on pin PIO1_7 (signal GPIO_5-TXD in the schematic) and the 
receive signal (RXD) is available on pin PIO1_6 (signal GPIO_6-RXD in the schematic). 

Below are some functions to get the UART functionality started. The UARTInit() function will 

initialize the pin-muxing, enable the UART peripheral, setup the bit rate and empty the FIFO:s. 

#include "LPC11xx.h" 

#include "uart.h" 

 

#define LSR_RDR    0x01 

#define LSR_OE     0x02 

#define LSR_PE     0x04 

#define LSR_FE     0x08 

#define LSR_BI     0x10 

#define LSR_THRE   0x20 

#define LSR_TEMT   0x40 

#define LSR_RXFE   0x80 

 

/***************************************************************************** 

** Function name:  UARTInit 

** 

** Descriptions:   Initialize UART0 port, setup pin select, 

**                 clock, parity, stop bits, FIFO, etc. 

** 

** parameters:     UART baudrate 

** Returned value: None 

**  

*****************************************************************************/ 

void UARTInit(uint32_t baudrate) 

{ 

  uint32_t Fdiv; 

  uint32_t regVal; 

 

  LPC_IOCON->PIO1_6 &= ~0x07;        /*  UART I/O config */ 

  LPC_IOCON->PIO1_6 |= 0x01;         /* UART RXD */ 

  LPC_IOCON->PIO1_7 &= ~0x07;  

  LPC_IOCON->PIO1_7 |= 0x01;         /* UART TXD */ 

 

  /* Enable UART clock */ 

  LPC_SYSCON->SYSAHBCLKCTRL |= (1<<12); 

  LPC_SYSCON->UARTCLKDIV = 0x1;      /* divided by 1 */ 

 

  LPC_UART->LCR = 0x83;              /* 8 bits, no Parity, 1 Stop bit */ 

  regVal = LPC_SYSCON->UARTCLKDIV; 

  Fdiv = (((SystemCoreClock/LPC_SYSCON->SYSAHBCLKDIV)/regVal)/16)/baudrate; 

 

  LPC_UART->DLM = Fdiv / 256; 

  LPC_UART->DLL = Fdiv % 256; 

  LPC_UART->LCR = 0x03;  /* DLAB = 0 */ 

  LPC_UART->FCR = 0x07;  /* Enable and reset TX and RX FIFO. */ 

 

  /* Read to clear the line status. */ 

  regVal = LPC_UART->LSR; 

 

  /* Ensure a clean start, no data in either TX or RX FIFO. */ 

  while ( (LPC_UART->LSR & (LSR_THRE|LSR_TEMT)) != (LSR_THRE|LSR_TEMT) ); 

  while ( LPC_UART->LSR & LSR_RDR ) 

  { 

 regVal = LPC_UART->RBR; /* Dump data from RX FIFO */ 

  } 

 

  return; 

} 

 

/***************************************************************************** 



LPCXpresso Experiment Kit - User’s Guide Page 105  

 

 

Copyright 2013 © Embedded Artists AB 

 

 ** Function name:  UARTSendChar 

 ** 

 ** Descriptions:   Send a byte/char of data to the UART 0 port 

 ** 

 ** parameters:     byte to send 

 ** Returned value: None 

 ** 

 *****************************************************************************/ 

void UARTSendChar(uint8_t toSend) 

{ 

    /* THRE status, contain valid data */ 

    while ( !(LPC_UART->LSR & LSR_THRE) ) 

        ; 

    LPC_UART->THR = toSend; 

} 

 

/***************************************************************************** 

 ** Function name:  UARTReceive 

 ** 

 ** Descriptions:   Receive a block of data from the UART 0 port based 

 **                 on the data length 

 ** 

 ** parameters:     buffer pointer, data length 

 ** Returned value: Number of received bytes 

 ** 

 *****************************************************************************/ 

uint32_t UARTReceive(uint8_t *buffer, uint32_t length, uint32_t blocking) 

{ 

    uint32_t recvd = 0; 

    uint32_t toRecv = length; 

 

    if (blocking) { 

        while (toRecv) { 

            /* wait for data */ 

            while (!(LPC_UART->LSR & LSR_RDR)); 

 

            *buffer++ = LPC_UART->RBR; 

            recvd++; 

            toRecv--; 

        } 

    } 

    else { 

        while (toRecv) { 

            /* break if no data */ 

            if (!(LPC_UART->LSR & LSR_RDR)) { 

                break; 

            } 

 

            *buffer++ = LPC_UART->RBR; 

            recvd++; 

            toRecv--; 

        } 

    } 

    return recvd; 

} 

 

Function UARTSendChar() transmits one byte/char of data. UARTReceive() is a function 

that can receive data either blocking or non-blocking. Blocking means that the processor spends all 
time idle waiting (in the function call) for the wanted number of characters to be received. Non-blocking 
means that the function returns with the number of available characters that was/were received. It will 
be somewhere between zero (0) and length number of characters. Another name for non-blocking 

is asynchronous function call. Blocking calls can also be called synchronous function calls. 

Place the UART related code in file uart.c, and place the function prototype declarations in file 

uart.h. 

 



LPCXpresso Experiment Kit - User’s Guide Page 106  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.15.1  Lab 14a: Transmitting and Receiving via the UART 

Expand the UARTSendChar() function to UARTSendString(uint8_t *pStr) 

function (transmits a zero-terminated string – the terminating zero is not transmitted) and 
UARTSendBuffer(uint8_t *pBuf, uint16_t length) functions. 

Create a small program that makes use of these transmission functions. Also let the program echo 
every received character. 

Connect the FTDI cable and verify that the program works as intended. 

Test to echo a longer string: “Received: x” (where x is the received char) from the LPC111x.  

Type characters on the PC terminal program and observe the echoed response from the LPC111x. 

Now test to send a series of 100 characters back to back from the PC. This is for example done by 
sending a 100 byte long file. Select Send file in the File menu. What will happen?  

_____________________________________________________________________________ 

_____________________________________________________________________________ 

 

Every received character results in several characters echoed back to the PC. These echoed 
characters will take longer time than the time of the (originally) received character. Characters are 
received at full speed (back-to-back) and soon both transmit and received FIFOs will be full. Received 
characters will start to be missed. 

The solution is flow control. A receiver must be able to inform a transmitter that it must wait for a while 
before transmitting more characters. One commonly used software solution for this is called Xon/Xoff 
flow control, see: http://en.wikipedia.org/wiki/Software_flow_control for more information. A commonly 
used hardware solution is called RTS/CTS flow control, see: 
http://en.wikipedia.org/wiki/Flow_control_%28data%29#Hardware_flow_control 

 

7.15.2  Lab 14b: Direct printf() to UART 

In exercise Lab 4a-4d, semihosting was explored. In this experiment the printf() output will be sent to 
the UART communication channel. Remember that the C runtime library had to be of the correct type 
for semihosting to work. Have a look at Figure 21 and make sure the project settings select Redlib 
(nohost) as the C runtime library for this exercise. There are hooks in Redlib for directing the printf()-
output to any wanted communication channel – the UART in this case. 

The two simple functions below is all that is needed to direct the printf()-output to the UART and also to 
let scanf()-input come from the UART. 

#include "stdio.h" 

#include "uart.h" 

... 

 

//use UART for printf 

int __sys_write(int iFileHandle, char *pcBuffer, int iLength) 

{ 

  UARTSendBuffer((uint8_t *)pcBuffer,iLength);    //send data buffer to UART 

  return iLength; 

}  

 

int __sys_readc(void) 

{ 

  char c; 

  UARTReceive((uint8_t*)&c, 1, TRUE); 

  return (int)c; 

} 

 

Place the two functions above in a file called retarget.c. 



LPCXpresso Experiment Kit - User’s Guide Page 107  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Create a program that outputs a message, with the help of printf(), on the UART channel and 

receive the message on a terminal program on a PC. Also let the program verify that scanf() 

works. 

Remember that the UART must still be initialized before printf()/scanf() are used. 

 

7.15.3  Lab 14c: Interrupt driven UART handling and ring buffers 

Blocking function calls can be problematic since it can block other activities in a system. A way to 
handle this is to create circular buffers, both for received characters and transmission. An interrupt 
handler place received characters in the receive buffer. The program can then peek into the circular 
buffer to check if there are any received characters. If not, execution can continue with other tasks. 

Below is code the implements UART receive functionality with the help of interrupts and circular 
buffers. The interrupt routine (ISR) handle both receive and transmit interrupts. Study the code to 
understand how it works. 

#include "lpc11xx.h" 

#include "uart.h" 

 

//size of transmit buffer - size MUST be power of two 

#define TX_BUFFER_SIZE 256 

#define TX_BUFFER_MASK (TX_BUFFER_SIZE-1) 

 

//size of receive buffer - size MUST be power of two 

#define RX_BUFFER_SIZE 256 

#define RX_BUFFER_MASK (RX_BUFFER_SIZE-1) 

 

#define LSR_RDR    0x01 

#define LSR_OE     0x02 

#define LSR_PE     0x04 

#define LSR_FE     0x08 

#define LSR_BI     0x10 

#define LSR_THRE   0x20 

#define LSR_TEMT   0x40 

#define LSR_RXFE   0x80 

 

#define IER_RBR    0x01 

#define IER_THRE   0x02 

#define IER_RLS    0x04 

 

#define IIR_PEND   0x01 

#define IIR_RLS    0x03 

#define IIR_RDA    0x02 

#define IIR_CTI    0x06 

#define IIR_THRE   0x01 

 

 

static volatile uint8_t  txBuf[TX_BUFFER_SIZE]; 

static volatile uint32_t txHead = 0; 

static volatile uint32_t txTail = 0; 

static volatile uint8_t  txRunning = FALSE; 

 

static volatile uint8_t  rxBuf[RX_BUFFER_SIZE]; 

static volatile uint32_t rxHead = 0; 

static volatile uint32_t rxTail = 0; 

 

/***************************************************************************** 

** Function name:  UARTInit 

** 

** Descriptions:   Initialize UART0 port, setup pin select, 

**                 clock, parity, stop bits, FIFO, etc. 

** 

** parameters:     UART baudrate 

** Returned value: None 

** 

*****************************************************************************/ 

void UARTInit(uint32_t baudrate) 



LPCXpresso Experiment Kit - User’s Guide Page 108  

 

 

Copyright 2013 © Embedded Artists AB 

 

{ 

  uint32_t Fdiv; 

  uint32_t regVal; 

 

  NVIC_DisableIRQ(UART_IRQn); 

 

  LPC_IOCON->PIO1_6 &= ~0x07;        /*  UART I/O config */ 

  LPC_IOCON->PIO1_6 |= 0x01;         /* UART RXD */ 

  LPC_IOCON->PIO1_7 &= ~0x07; 

  LPC_IOCON->PIO1_7 |= 0x01;         /* UART TXD */ 

 

  /* Enable UART clock */ 

  LPC_SYSCON->SYSAHBCLKCTRL |= (1<<12); 

  LPC_SYSCON->UARTCLKDIV = 0x1;      /* divided by 1 */ 

 

  LPC_UART->LCR = 0x83;              /* 8 bits, no Parity, 1 Stop bit */ 

  regVal = LPC_SYSCON->UARTCLKDIV; 

  Fdiv = (((SystemCoreClock/LPC_SYSCON->SYSAHBCLKDIV)/regVal)/16)/baudrate; 

 

  LPC_UART->DLM = Fdiv / 256; 

  LPC_UART->DLL = Fdiv % 256; 

  LPC_UART->LCR = 0x03;   /* DLAB = 0 */ 

  LPC_UART->FCR = 0x07;   /* Enable and reset TX and RX FIFO. */ 

 

  /* Read to clear the line status. */ 

  regVal = LPC_UART->LSR; 

 

  /* Ensure a clean start, no data in either TX or RX FIFO. */ 

  while ( (LPC_UART->LSR & (LSR_THRE|LSR_TEMT)) != (LSR_THRE|LSR_TEMT) ); 

  while ( LPC_UART->LSR & LSR_RDR ) 

  { 

    regVal = LPC_UART->RBR; /* Dump data from RX FIFO */ 

  } 

 

  //initialize the transmit data queue 

  txHead    = 0; 

  txTail    = 0; 

  txRunning = FALSE; 

 

  //initialize the receive data queue 

  rxHead    = 0; 

  rxTail    = 0; 

 

  /* Enable the UART Interrupt */ 

  NVIC_EnableIRQ(UART_IRQn); 

 

  LPC_UART->IER = IER_RBR | IER_THRE | IER_RLS; /* Enable UART interrupt */ 

} 

 

/***************************************************************************** 

** Function name:   UART_IRQHandler 

** 

** Descriptions:    UART interrupt handler 

** 

** parameters:      None 

** Returned value:    None 

** 

*****************************************************************************/ 

void UART_IRQHandler(void) 

{ 

  volatile uint8_t IIRValue, LSRValue, statusReg; 

  uint8_t Dummy = Dummy; 

  volatile uint32_t tmpHead; 

  volatile uint32_t tmpTail; 

 

  statusReg = IIRValue = LPC_UART->IIR; 

  IIRValue >>= 1;     /* skip pending bit in IIR */ 

  IIRValue &= 0x07;     /* check bit 1~3, interrupt identification */ 

  if (IIRValue == IIR_RLS)    /* Receive Line Status */ 

  { 

    LSRValue = LPC_UART->LSR; 

    /* Receive Line Status */ 

    if (LSRValue & (LSR_OE | LSR_PE | LSR_FE | LSR_RXFE | LSR_BI)) 

    { 

      /* There are errors or break interrupt */ 



LPCXpresso Experiment Kit - User’s Guide Page 109  

 

 

Copyright 2013 © Embedded Artists AB 

 

      /* Read LSR will clear the interrupt */ 

      Dummy = LPC_UART->RBR;  //Dummy read on RX to clear interrupt, then bail out 

      return; 

    } 

    if (LSRValue & LSR_RDR) /* Receive Data Ready */ 

    { 

      /* If no error on RLS, normal ready, save into the data buffer. */ 

      /* Note: read RBR will clear the interrupt */ 

      tmpHead = (rxHead + 1) & RX_BUFFER_MASK; 

      rxHead  = tmpHead; 

 

      if(tmpHead == rxTail) 

        tmpHead = LPC_UART->RBR;         //dummy read to reset IRQ flag 

      else 

        rxBuf[tmpHead] = LPC_UART->RBR;  //will reset IRQ flag 

    } 

  } 

  else if (IIRValue == IIR_RDA) /* Receive Data Available */ 

  { 

    /* Receive Data Available */ 

    tmpHead = (rxHead + 1) & RX_BUFFER_MASK; 

    rxHead  = tmpHead; 

 

    if(tmpHead == rxTail) 

      tmpHead = LPC_UART->RBR;         //dummy read to reset IRQ flag 

    else 

      rxBuf[tmpHead] = LPC_UART->RBR;  //will reset IRQ flag 

  } 

  else if (IIRValue == IIR_CTI) /* Character timeout indicator */ 

  { 

    /* Character Time-out indicator */ 

    ;  //functionality not implemented 

  } 

  else if (IIRValue == IIR_THRE)  /* THRE, transmit holding register empty */ 

  { 

    //check if all data is transmitted 

    if (txHead != txTail) 

    { 

      uint32_t bytesToSend; 

 

      if (statusReg & 0xc0) 

        bytesToSend = 16;    //FIFO enabled 

      else 

        bytesToSend = 1;     //no FIFO enabled 

 

      do 

      { 

        //calculate buffer index 

        tmpTail = (txTail + 1) & TX_BUFFER_MASK; 

 

        txTail = tmpTail; 

        LPC_UART->THR = txBuf[tmpTail]; 

      } while((txHead != txTail) && --bytesToSend); 

    } 

 

    //all data has been transmitted 

    else 

    { 

      txRunning = FALSE; 

      LPC_UART->IER &= ~IER_THRE;     //disable TX IRQ 

    } 

  } 

} 

 

/***************************************************************************** 

 ** Function name:  UARTSendChar 

 ** 

 ** Descriptions:   Send a byte/char of data to the UART 0 port 

 ** 

 ** parameters:     byte to send 

 ** Returned value: None 

 ** 

 *****************************************************************************/ 

void UARTSendChar(uint8_t toSend) 

{ 



LPCXpresso Experiment Kit - User’s Guide Page 110  

 

 

Copyright 2013 © Embedded Artists AB 

 

  uint32_t tmpHead; 

 

  //calculate head index 

  tmpHead = (txHead + 1) & TX_BUFFER_MASK; 

 

  //wait for free space in buffer 

  while(tmpHead == txTail) 

    ; 

 

  //disable TX IRQ 

  LPC_UART->IER &= ~IER_THRE; 

 

  if(txRunning == TRUE) 

  { 

    txBuf[tmpHead] = toSend; 

    txHead         = tmpHead; 

  } 

  else 

  { 

    txRunning = TRUE; 

 

    /* Extra check - should not be needed: THRE status, contain valid data */ 

    while ( !(LPC_UART->LSR & LSR_THRE) ) 

      ; 

 

    LPC_UART->THR = toSend; 

  } 

 

  //enable TX IRQ 

  LPC_UART->IER |= IER_THRE; 

} 

 

/***************************************************************************** 

 ** Function name:  UARTGetCharBlock 

 ** 

 ** Descriptions:   Receive a char from UART 0 

 ** 

 ** parameters:     None 

 ** Returned value: Received char 

 ** 

 *****************************************************************************/ 

uint8_t UARTGetCharBlock(void) 

{ 

  //exercise to implement this function... 

 

} 

 

/***************************************************************************** 

 ** Function name:  UARTGetChar 

 ** 

 ** Descriptions:   Receive a char from UART 0 

 ** 

 ** parameters:     pointer to where to store received char 

 ** Returned value: TRUE if char received, else FALSE 

 ** 

 *****************************************************************************/ 

uint8_t UARTGetChar(uint8_t *pRxChar) 

{ 

  uint32_t tmpTail; 

 

  /* check if buffer is empty */ 

  if(rxHead == rxTail) 

    return FALSE; 

 

  tmpTail = (rxTail + 1) & RX_BUFFER_MASK; 

  rxTail  = tmpTail; 

 

  *pRxChar = rxBuf[tmpTail]; 

  return TRUE; 

} 

 



LPCXpresso Experiment Kit - User’s Guide Page 111  

 

 

Copyright 2013 © Embedded Artists AB 

 

Place the UART related code in file uart.c, and place the function prototype declarations in file 

uart.h. Do not forget to remove the retarget.c file and change back C runtime library to 

Redlib (semihost). 

The code is quite complex and builds on two circular buffers. The receive and transmit buffers can 
have different sizes, but they must be a power of two. The reason for this is the special mask 
operations (bitwise-AND with size minus 1). Characters to be transmitted should be placed in a circular 
buffer. If transmission is not active, start transmission again with the first character in the buffer. As 
soon as a character has been transmitted the interrupt handler checks if there are more characters to 
be transmitted in the buffer. If no more, disable the transmission interrupt. 

Extend the code above to also implement a uint8_t UARTGetCharBlock(void) function 

that blocks until a char has been received and returns the received character. Let the new function 
make use of the UARTGetChar() function. 

Also update the UARTSendString() and UARTSendBuffer() functions from Lab14a. The 

suggested function prototypes are as below. These functions are needed on future experiments (with 
RF modules). 

/***************************************************************************** 

 ** Function name:  UARTSendString 

 ** 

 ** Descriptions:   Send a null-terminated string to UART 0 port 

 ** 

 ** parameters:     byte to send and if call should wait for transfer to complete 

 ** Returned value: None 

 ** 

 *****************************************************************************/ 

void UARTSendString(uint8_t *pStr, uint8_t blocking); 

 

/***************************************************************************** 

 ** Function name:  UARTSendBuffer 

 ** 

 ** Descriptions:   Send a number of bytes/chars of data to UART 0 port 

 ** 

 ** parameters:     data to send, number of bytes and if call is blocking 

 ** Returned value: None 

 ** 

 *****************************************************************************/ 

void UARTSendBuffer(uint8_t *pBuf, uint16_t length, uint8_t blocking); 

 

 

Create an application that demonstrates receive and transmit circular buffers. The receive overflow 
problem in the previous experiment can for example be handled to some extent if the buffers are large 
enough. 

 



LPCXpresso Experiment Kit - User’s Guide Page 112  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.16  Extra: Work with RF-module 

In this experiment you will learn how to work with radio modules. 

Note that the breadboard cannot be used in these experiments. The RF module connectors 
have 2.0 mm pitch as opposed to the 2.54 mm pitch found on breadboards. Also note that the 
radio modules used in these experiments are not included and must be purchased separately. 

The RF module interface is found on schematic page 7, also replicated in the picture below. All 
components in Figure 63 must be soldered.  J2, the LPCXpresso board connector on schematic page 
2, must also be soldered. 

 

Figure 63 – RF Module Interface on Schematic Page 7 

Many RF modules come in the XBee® physical form factor. An UART interface is connected for 
communication with the RF module. All 20 pins are however available via connectors J13/J14 in case 
some other pins must be connected for more advanced experiments where more functionality in the 
modules is utilized. Figure 64 illustrates how an XBee module is mounted in J15. Note that J12 should 
normally have a shorting jumper in position 1-2, the right position as illustrated in the picture below. 

 

Figure 64 – XBee® Module Mounted in J15 



LPCXpresso Experiment Kit - User’s Guide Page 113  

 

 

Copyright 2013 © Embedded Artists AB 

 

A shorting jumper in position 1-2 of J12 means that the RF module is powered from the 3.3V supply 
from the LPCXpresso or mbed board. This supply is somewhat current limited (about 100-150mA) but 
will be sufficient for most RF modules. However, some modules have higher current requirements and 
then the shorting jumper should be placed in 2-3 position of J12. This is the left position for the jumper, 
when viewed like in Figure 64. In this case, an external power supply can power the RF module (via 
U1 voltage regulator). 

The RF-module experiments are based on the interrupt-driven UART code from Lab14c. The 
UARTSendString() and UARTSendBuffer()functions are needed. 

 

7.16.1  Lab 15a: XBee™ RF-Module 

This exercise requires at least two XBee modules and the same number of experiment boards to be 
able to test XBee communication. One of the boards will be setup as a controller and the other as 
node(s).  

There are many different XBee modules with different functionality and programming interfaces. The 
XBee module used in this experiment is: XB24-AWI-001. It can be bought from for example Digikey: 
XB24-AWI-001-ND or Mouser: 888-XB24-AWI-001. 

Prepare the boards by plugging in the XBee module in the J15 socket and inserting a jumper in J12 at 
position 1-2 to get power from the LPCXpresso board. 

The XBee driver is quite large and is found in the xbee.c and xbee.h files in the code framework 

that is provided. Copy all drivers created so far into the project, including the interrupt driven UART 
code from Lab 14c. 

Below is the template for the main() program. 

#include "stdio.h" 

#include "LPC11xx.h" 

#include "type.h" 

#include "board.h" 

#include "gpio.h" 

#include "delay.h" 

#include "xbee.h" 

 

/* 

 * Application configuration 

 * 

 * CFG_ACT_AS_COORDINATOR - (1) - Configure the XBee module to act as a coordinator. 

 *                          (0) - Configure the XBee module to act as an end-device 

 */ 

#define CFG_ACT_AS_COORDINATOR (0) 

 

/* 

 * RF message IDs, add your own here but make sure that the coordinator 

 * and the nodes have the same numbering. 

 */ 

#define RFPT_SET_LED (1) 

 

 

// Forward declarations 

static void xbeeUp(uint8_t up); 

static void xbeeNode(uint32_t addrHi, uint32_t addrLo, uint8_t rssi); 

static void xbeeTxStatus(uint8_t frameId, xbeeTxStatus_t error); 

static void xbeeData(uint32_t addrHi, uint32_t addrLo, uint8_t rssi, 

    uint8_t* buf, uint8_t len); 

 

static xbee_callb_t callbacks = { 

    xbeeUp, 

    xbeeNode, 

    xbeeTxStatus, 

    xbeeData 

}; 

 

static uint8_t devIsReady = 0; 



LPCXpresso Experiment Kit - User’s Guide Page 114  

 

 

Copyright 2013 © Embedded Artists AB 

 

volatile uint32_t ms_ticks = 0; 

 

 

/***************************************************************************** 

 ** Function name:  SysTick_Handler 

 ** 

 ** Descriptions:   Interrupt handler. Updates the ms_ticks variable to hold 

 **                 the number of milliseconds since start. This will be 

 **                 reasonably accurate and is used by the Xbee driver to 

 **                 handle timeouts. 

 ** 

 ** parameters:     None 

 ** Returned value: The time in milliseconds 

 ** 

 *****************************************************************************/ 

void SysTick_Handler(void) { 

    ms_ticks += 10; 

} 

 

 

/***************************************************************************** 

 ** Function name:  xbeeUp 

 ** 

 ** Descriptions:   XBee node up/down callback. 

 ** 

 ** parameters:     up will be 1 if the node is up, 0 if it is down 

 ** Returned value: None 

 ** 

 *****************************************************************************/ 

static void xbeeUp(uint8_t up) 

{ 

  printf("RF: Xbee Up (%d)\r\n", up); 

  devIsReady = up; 

} 

 

 

/***************************************************************************** 

 ** Function name:  xbeeNode 

 ** 

 ** Descriptions:   XBee node discover callback. Will be called as a response 

 **                 to a Xbee node discovery request. All found nodes are 

 **                 reported back one-by-one through this callback. 

 ** 

 ** parameters:     addrHi - upper 32 bits of the 64-bit node address, 

 **                 addrLo - lower 32 bits of the 64-bit node address, 

 **                 rssi   - signal strength 

 ** Returned value: None 

 ** 

 *****************************************************************************/ 

static void xbeeNode(uint32_t addrHi, uint32_t addrLo, uint8_t rssi) 

{ 

  printf("RF: Node %x:%x rssi=%d\r\n", addrHi, addrLo, rssi); 

} 

 

 

/***************************************************************************** 

 ** Function name:  xbeeTxStatus 

 ** 

 ** Descriptions:   Transmit status callback. Called as a result of a packet 

 **                 being sent from the Xbee node. 

 ** 

 ** parameters:     frameId - ID of the frame that was sent, 

 **                 status - status of the transmit request 

 ** Returned value: None 

 ** 

 *****************************************************************************/ 

static void xbeeTxStatus(uint8_t frameId, xbeeTxStatus_t status) 

{ 

  if (status != XBEE_TX_STAT_OK) { 

    printf("RF: [%d] TX failed %d\r\n", frameId, status); 

  } 

} 

 

 

/***************************************************************************** 



LPCXpresso Experiment Kit - User’s Guide Page 115  

 

 

Copyright 2013 © Embedded Artists AB 

 

 ** Function name:  xbeeTxStatus 

 ** 

 ** Descriptions:   Received data callback. Called when data has been received 

 **                 by the Xbee node. 

 ** 

 ** parameters:     addrHi - upper 32 bits of the 64-bit node address, 

 **                 addrLo - lower 32 bits of the 64-bit node address, 

 **                 rssi   - signal strength, 

 **                 buf    - buffer containing the data, 

 **                 len    - number of received bytes, 

 ** Returned value: None 

 ** 

 *****************************************************************************/ 

static void xbeeData(uint32_t addrHi, uint32_t addrLo, uint8_t rssi, 

    uint8_t* buf, uint8_t len) 

{ 

  int i = 0; 

  printf("xbeeData %x:%x, rssi=%d, len=%d\r\n", addrHi, addrLo, rssi, len); 

 

  if (len < 1) { 

    return; 

  } 

 

  switch (buf[0]) { 

  // Set LED request. This is a two byte request where the data 

  // indicates if the LED should be turned on or off. 

  case RFPT_SET_LED: 

    if (len > 1) { 

      if (buf[1] == 1) { 

      GPIOSetValue(LED1_PORT, LED1_PIN, LED_ON); 

      } else { 

     GPIOSetValue(LED1_PORT, LED1_PIN, LED_OFF); 

      } 

    } 

    break; 

 

  default: 

    for (i = 0; i < len; i++) { 

      if (i > 0 && (i%8) == 0) { 

        printf("\r\n"); 

      } 

      printf("%x ", buf[i]); 

    } 

    printf("\r\n"); 

    break; 

  } 

} 

 

 

/***************************************************************************** 

 ** Function name:  sendSetLedRequest 

 ** 

 ** Descriptions:   Broadcasts a request over Xbee to set the status of the LED 

 ** 

 ** parameters:     ledOn - should the LED be lit or not 

 ** Returned value: ERR_OK or an error code 

 ** 

 *****************************************************************************/ 

static error_t sendSetLedRequest(uint8_t ledOn) 

{ 

  uint8_t data[2]; 

  uint8_t id = 0; 

 

  data[0] = RFPT_SET_LED; 

  data[1] = ledOn; 

 

  return xbee_send(XBEE_ADDRHI_BROADCAST, XBEE_ADDRLO_BROADCAST, data, 2, &id); 

} 

 

 

int main (void) 

{ 

  error_t err; 

  uint8_t state = 0; 

  uint8_t oldState = !SW_PRESSED; 



LPCXpresso Experiment Kit - User’s Guide Page 116  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

 

  //Set LED1 pin as output 

  ... 

 

 

  //Set SW2 button pin as inputs 

  ... 

 

 

  //Use systick to get an interrupt every 10ms 

  SysTick_Config(SystemCoreClock / 100); 

 

#if (CFG_ACT_AS_COORDINATOR == 1) 

  printf("XBee demo - COORDINATOR\r\n"); 

  err = xbee_init(XBEE_COORDINATOR, &callbacks); 

#else 

  printf("XBee demo - NODE\r\n"); 

  err = xbee_init(XBEE_END_DEVICE, &callbacks); 

#endif 

 

  if (err != ERR_OK) { 

 printf("Failed to initialize Xbee. Error code %d. Aborting...\n", err); 

 while (1) { 

  // wait forever 

 } 

  } 

 

  while (1) { 

    xbee_task(); 

 

    if (devIsReady != 0) { 

      // check button state 

      state = GPIOGetValue(SW2_PORT, SW2_PIN); 

 

      if (oldState != state) { 

        oldState = state; 

        printf("Button: %u\r\n", state); 

 

        sendSetLedRequest(state); 

      } 

    } 

  } 

 

  return 0; 

} 

 

 

The XBee driver is provided four callbacks during initialization. The callbacks will be called when the 
driver has completed initialization of the XBee module (xbeeUp), when a new node is discovered 
(xbeeNode), a transfer is completed (xbeeTxStatus) and when data is received (xbeeData). The 
driver’s xbee_task() function must be repeatedly called in order for the Xbee module to work correctly.  

The CFG_ACT_AS_COORDINATOR define should be set to 1 for the controller and 0 for the nodes. 
Look at the implementation of the xbee_init() function to see how they are treated differently. 

The last thing to note about the program is the RFPT_SET_LED command that is sent when a button 
is pressed. The command is received by another node and is processed in the xbeeData() function.  

Run the program on both boards and note that pressing the SW2 button on one board lights the LED 
on the other board. 

Suggested improvements: 

 Extend the protocol to retrieve the temperature reading from the other board 

 Use one board’s quadrature encoder to control the other board’s 7-segment display 

 Read analog values remotely 



LPCXpresso Experiment Kit - User’s Guide Page 117  

 

 

Copyright 2013 © Embedded Artists AB 

 

 If you have access to more than two XBee modules test what happens when they are all 
powered. 

 Change the protocol from broadcast mode to point-to-point communication by adding the 
target node’s address in the xbee_send() function call. 

 

 

7.16.2  Lab 15b: GPS Receiver 

The Global Positioning System (GPS for short) is a satellite navigation system that provides time and 
location information as long as there is a direct line of sight to at least four satellites. GPS is used in a 
wide range of application including cell phones and car navigation systems. 

In this experiment a GPS module from Embedded Artists (with the GPS chip from GlobalTop 
Technology Inc) will be used. It is simple to use as there is no initialization of the module and it 
continuously sends the received information on the UART channel explored in Lab14a-c. The baud 
rate is specified by the module to 9600bps. 

Note that the GPS module in not included in the component kit. It must be bought separately. 

Figure 65 illustrates the GPS module mounted in RF module interface connector J15. The current 
consumption is low for the module (ín the region of a couple of mA) so the shorting jumper can be 
placed in position 1-2 on J12 (right position in picture below). 

 

Figure 65 – GPS Module Mounted in J15 

The module outputs a number of different messages in the NMEA 0183 format 
(http://en.wikipedia.org/wiki/NMEA_0183). Each message starts with a dollar sign $ and ends with a 
checksum. These are some examples taken from the manufacturer’s data sheet: 

$GPGGA,064951.000,2307.1256,N,12016.4438,E,1,8,0.95,39.9,M,17.8,M,,*65 

 

$GPGSA,A,3,29,21,26,15,18,09,06,10,,,,,2.32,0.95,2.11*00 

 

$GPGSV,3,1,09,29,36,029,42,21,46,314,43,26,44,020,43,15,21,321,39*7D 

 

$GPRMC,064951.000,A,2307.1256,N,12016.4438,E,0.03,165.48,260406,3.05,W,A*2C 

 

The exact meaning of each of them is found in the data sheet but here we will focus on the one starting 
with $GPGGA as it contains the time and location information. 

http://en.wikipedia.org/wiki/NMEA_0183


LPCXpresso Experiment Kit - User’s Guide Page 118  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Figure 66 – GPS Module Data Format 

The code below will read one message at a time from the GPS and then extract the time and latitude 
parts into the gpsData structure. 

#include "LPC11xx.h" 

#include "uart.h" 

#include "gps.h"   //put typedef declaration below (gpsData) in gps.h file 

 

/** 

 * Data structure for the GPS values 

 */ 

typedef struct gpsData { 

  uint8_t satellitesUsed[20]; 

  uint8_t utcTime[20]; 

  uint8_t altitude[20]; 

  uint8_t bufLatitude[20]; 

  uint8_t bufLongitude[20]; 

  int positionFixed; 

  int northSouthIndicator; 

  int eastWestIndicator; 

  int latitude; 

  int longitude; 

} gpsData; 

 

static uint8_t END_OF_MESSAGE = '\0'; 

static uint8_t DIVIDER = ','; 

 

// The parsed data 

static gpsData data; 

 

 

 

 

 



LPCXpresso Experiment Kit - User’s Guide Page 119  

 

 

Copyright 2013 © Embedded Artists AB 

 

/***************************************************************************** 

 ** Function name:               hasPattern 

 ** 

 ** Descriptions:                Tests if pBuf starts with pPattern. 

 ** 

 ** parameters:                  Buffer to search and pattern to match 

 ** Returned value:              1 if pBuf starts with pPattern, 0 otherwise 

 ** 

 *****************************************************************************/ 

static uint8_t hasPattern(uint8_t *pBuf, uint8_t *pPattern) 

{ 

  while(*pBuf != END_OF_MESSAGE && *pPattern != END_OF_MESSAGE){ 

    if(*pBuf != *pPattern){ 

      return 0; 

    } 

    pPattern++; 

    pBuf++; 

  } 

  return 1; 

} 

 

/***************************************************************************** 

 ** Function name:               pointToNextValue 

 ** 

 ** Descriptions:                Moves past the next divider 

 ** 

 ** parameters:                  Pointer to the string to search 

 ** Returned value:              None 

 ** 

 *****************************************************************************/ 

static void pointToNextValue(uint8_t **ppBuf) 

{ 

  while(**ppBuf != END_OF_MESSAGE) { 

    if (**ppBuf == DIVIDER) { 

      (*ppBuf)++; // point to the start of next value 

      break; 

    } 

    (*ppBuf)++; 

  } 

} 

 

/***************************************************************************** 

 ** Function name:               convertCordinateToDegree 

 ** 

 ** Descriptions:                Converts the pBuf string which is in the 

 **                              "ddmm.mmmm" format into an integer representation 

 ** 

 ** parameters:                  The buffer, the resulting integer and the 

 **                              length of the buffer 

 ** Returned value:              None 

 ** 

 *****************************************************************************/ 

static void convertCordinateToDegree(uint8_t *pBuf, int* pDegree, int len) 

{ 

  int index = 0; 

  int sum = 0; 

  int deg = 0; 

  int min = 0; 

  int div = 0; 

  int pow = 1; 

 

  for (index = len; index >=0; index--) { 

    if (pBuf[index] == '.') { 

      div = 1; 

      continue; 

    } 

 

    sum += pow * (pBuf[index] & 0x0F); 

 

    if (index > 0) { 

      pow *= 10; 

      div *= 10; 

    } 

  } 

 



LPCXpresso Experiment Kit - User’s Guide Page 120  

 

 

Copyright 2013 © Embedded Artists AB 

 

  div = pow / div; 

  deg = sum / (div*100); 

  min = sum - (deg*div*100); 

 

  // convert to decimal minutes 

  min = (min * 100) / 60; 

  *pDegree = (deg*div*100) + min; 

 

  if (div > 10000) { 

    // normalize minutes to 6 decimal places 

    *pDegree /= (div / 10000); 

  } 

} 

 

/***************************************************************************** 

 ** Function name:               parseUTC 

 ** 

 ** Descriptions:                Extracts the UTC time string in hhmmss.sss, 

 **                              ignoring the .sss part and stores the result 

 **                              as a string in data.utcTime. 

 ** 

 ** parameters:                  The buffer 

 ** Returned value:              None 

 ** 

 *****************************************************************************/ 

static void parseUTC(uint8_t **ppBuf) 

{ 

  int index = 0; 

 

  // parse utc hhmmss.sss 

  while(**ppBuf != END_OF_MESSAGE) { 

    if(**ppBuf == '.') { 

      pointToNextValue(ppBuf); 

      break; //reached end of the value 

    } 

 

    data.utcTime[index++] = **ppBuf; 

 

    if(index == 2 || index == 5) { 

      //Add divider 

      data.utcTime[index++] = ':'; 

    } 

    (*ppBuf)++; 

  } 

  data.utcTime[index] = '\0'; 

} 

 

/***************************************************************************** 

 ** Function name:               parseLatitude 

 ** 

 ** Descriptions:                Extracts the latitude information and stores 

 **                              the result as an integer in data.latitude. 

 ** 

 ** parameters:                  The buffer 

 ** Returned value:              None 

 ** 

 *****************************************************************************/ 

static void parseLatitude(uint8_t **ppBuf) 

{ 

  int index = 0; 

 

  while(**ppBuf != END_OF_MESSAGE) { 

    if (**ppBuf == DIVIDER) { 

      (*ppBuf)++;  //reached end of the value 

      break; 

    } 

    data.bufLatitude[index++] = **ppBuf; 

    (*ppBuf)++; 

  } 

  convertCordinateToDegree((uint8_t *) &data.bufLatitude, &data.latitude, 8); 

} 

 

 

/***************************************************************************** 

 ** Function name:               GPSRetreiveData 



LPCXpresso Experiment Kit - User’s Guide Page 121  

 

 

Copyright 2013 © Embedded Artists AB 

 

 ** 

 ** Descriptions:                Reads and parses the next set of GPS data. 

 ** 

 ** parameters:                  None 

 ** Returned value:              The parsed information 

 ** 

 *****************************************************************************/ 

const gpsData* GPSRetreiveData(void) 

{ 

  uint8_t * pattern = (uint8_t*)"GPGGA"; 

 

  while (1) { 

    uint8_t buf[100]; 

    uint8_t ch = 0; 

    uint8_t *ptr = 0; 

    int index = 0; 

 

    // Retrieve the first byte 

    if (!UARTGetChar(&ch)) 

      continue; 

 

    // look for "$GPGGA," header 

    if (ch != '$') { 

      continue; 

    } 

 

    // Retrieve the next six bytes 

    for (index=0; index<6; index++) { 

      buf[index] = UARTGetCharBlock(); 

    } 

 

    //Check if its Global Positioning System fixed Data 

    if (hasPattern((uint8_t*)&buf, pattern) == 0) { 

      continue; 

    } 

 

    //Retrieve the data from the GPS module 

    for (index=0; index<100; index++) { 

      buf[index] = UARTGetCharBlock(); 

 

      if (buf[index] == '\r') { 

        buf[index] = END_OF_MESSAGE; 

        break; 

      } 

    } 

 

    ptr = &buf[0]; 

 

    //parse UTC time 

    parseUTC(&ptr); 

 

    //parse Latitude 

    parseLatitude(&ptr); 

 

    break; 

    } 

  return &data; 

} 

 

 

int main (void) 

{ 

  //Set LED1-LED8 pins as outputs 

  ... 

 

 

  //Set SW2/SW3 pins as inputs 

  ... 

 

 

  //initialize the UART to 9600bps 8N1 

  UARTInit(9600); 

 

  printf((uint8_t*)"\nWaiting for GPS data..."); 

 



LPCXpresso Experiment Kit - User’s Guide Page 122  

 

 

Copyright 2013 © Embedded Artists AB 

 

  //enter forever loop - 

  while(1) 

  { 

    const gpsData* pData = GPSRetreiveData(); 

    displayGpsData(pData); 

    delayMS(1000); 

  } 

 

  return 0; 

} 

 

 

Base the program on the UART functionality developed in Lab14c and place the GPS related code into 
gps.c and gps.h. 

Run the program to see the current time and latitude. The latitude settings requires at least four 
satellites, so if the latitude remains 0 after a minute then move closer to a window or perhaps take the 
board outside. 

Extend the program by implementing the functions to at least extract longitude and number of 
satellites.  

Verify your result by entering the coordinates in for example Google Maps or 
http://www.findlatitudeandlongitude.com/find-address-from-latitude-and-longitude/ 

 

http://www.findlatitudeandlongitude.com/find-address-from-latitude-and-longitude/


LPCXpresso Experiment Kit - User’s Guide Page 123  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.17  Extra: Work with Serial Expansion Connector 

In this experiment you will learn how to work with the Serial Expansion Connector. It is a 14-pin 
connector with SPI, UART and I2C communication interfaces and a couple of GPIOs. The purpose of 
the connector is to provide a simple expansion connector for smaller expansion modules. Such 
modules are typically sensors of different kinds and communication modules, but can also be smaller 
displays. Figure 67 illustrates the interface in the schematics. 

  

Figure 67 – Serial Expansion Connector on Schematic Page 7 

In preparation for the exercise, define all the pins in the Serial Expansion Connector (SEC) connector 
like below in file board.h. 

#define SEC14_PIN3_PORT    PORT2 

#define SEC14_PIN3_PIN     11 

 

#define SEC14_PIN4_PORT    PORT0 

#define SEC14_PIN4_PIN     9 

 

//continue with the rest of the pins 

... 

 

 

7.17.1  Lab 16a: 128x128 OLED Graphical Display 

In this exercise the serial expansion connector will be used to interface a 1.5 inch RGB OLED with a 
resolution of 128x128 pixels, see product page: http://www.embeddedartists.com/products/displays/ 
15_rgb_oled.php. The display can be bought directly from Embedded Artists, Digikey: EA-LCD-008 or 
Mouser: 924-EA-LCD-008. 

The display contains a built-in controller (SSD1351 from Solomon Systech) that is interfaced via a 4-
pin SPI channel (or an 8-bit parallel interface but in this exercise the SPI interface will be used). Pin 3, 
4, 6 and 11 are used for the SPI interface. Pin 11 is the fourth signal that is used to differentiate 
between command and pixel data information transfers. Further, pin 12 is used for reset of the display. 

The display module has five DIP switches. All switches except for “pos 3” shall be in “ON” position. 
See the display module’s schematics for details. 

http://www.embeddedartists.com/products/displays/15_rgb_oled.php
http://www.embeddedartists.com/products/displays/15_rgb_oled.php


LPCXpresso Experiment Kit - User’s Guide Page 124  

 

 

Copyright 2013 © Embedded Artists AB 

 

Figure 68 illustrates how the display is connected to the LPCXpresso Experiment board via a 14-pos 
cable. 

 

Figure 68 – 1.5 inch RGB OLED Connected via Serial Expansion Connector 

In the preparation a number of defines (SEC14_PIN*) were defined. Each module that is connected via 
the serial expansion connector can setup its own list of pins depending on needs. For the OLED 
module it will be: 

#define OLED_SSEL_PORT   SEC14_PIN6_PORT 

#define OLED_SSEL_PIN    SEC14_PIN6_PIN 

#define OLED_RESET_PORT  SEC14_PIN12_PORT 

#define OLED_RESET_PIN   SEC14_PIN12_PIN 

#define OLED_DC_PORT     SEC14_PIN11_PORT 

#define OLED_DC_PIN      SEC14_PIN11_PIN 

#define OLED_SD_PORT     SEC14_PIN14_PORT 

#define OLED_SD_PIN      SEC14_PIN14_PIN 

 

The advantage of this approach is that if the LPCXpresso LPC111x board is replaced with a different 
one then the pin/port information only has to be changed for the SEC14_* defines – the connected 
modules will remain unchanged. 

The SSD1315 controller chip is complex and creating a driver from scratch is out-of-scope for this 
exercise. Instead a number of ready drivers are give, see list below. These files must be 
copied/imported into the project. 

 draw.c/h – basic graphical drawing primitives 

 oled.c/h – OLED initialization function 

 ssd1315.c/h – OLED controller driver 

Below a code segment is given that serves as base for the program in this experiment. 

static void rainbow(draw_lcd_t *lcd) 

{ 

  // White => 0~15 

  draw_fillRectangle(lcd, 0, 0, 15, 127, 0xffff); 

 

  // Yellow => 16~31 

  ... 

 



LPCXpresso Experiment Kit - User’s Guide Page 125  

 

 

Copyright 2013 © Embedded Artists AB 

 

  // Purple => 32~47 

  ... 

 

  // Cyan => 48~63 

  ... 

 

  // Red => 64~79 

  ... 

 

  // Green => 80~95 

  ... 

 

  // Blue => 96~111 

  ... 

 

  // Black => 112~127 

  ... 

} 

 

 

int main (void) 

{ 

  draw_lcd_t lcd; 

 

  // outputs 

  GPIOSetDir(OLED_SSEL_PORT,    OLED_SSEL_PIN,  GPIO_OUTPUT); 

  GPIOSetDir(OLED_DC_PORT,      OLED_DC_PIN,    GPIO_OUTPUT); 

  GPIOSetDir(OLED_RESET_PORT,   OLED_RESET_PIN, GPIO_OUTPUT); 

 

  GPIOSetValue(OLED_SSEL_PORT,  OLED_SSEL_PIN,  1); 

  GPIOSetValue(OLED_DC_PORT,    OLED_DC_PIN,    1); 

  GPIOSetValue(OLED_RESET_PORT, OLED_RESET_PIN, 1); 

 

  SSP0Init(); 

 

  printf("\nInitializing oled driver..."); 

  oled_init(&lcd); 

 

  rainbow(&lcd); 

 

  //enter forever loop - 

  while (1) 

    ; 

 

  return 0; 

} 

 

 

Run the program and verify that a white bar is shown on the display. Now complete the rainbow 
function to show 8 differently colored bars on the display. 

Explore the other drawing primitives in the draw.c/h file. 

Some possible improvements of the code base: 

 Increase the speed of the SPI bus to 6MHz (originally 1.5MHz) 

 Test the ssd1351_fadeIn(), ssd1351_fadeOut(), ssd1351_verticalScroll(), 
ssd1351_horizontalScrol(), ssd1351_deactivateScroll() functions. Examples of usage can 
be found in the software package that came with the OLED display module 

 



LPCXpresso Experiment Kit - User’s Guide Page 126  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.18  Extra: Work with USB Device 

In this experiment you will learn how to work with an USB device interface. This experiment requires 
an LPCXpresso board with USB device interface. The LPCXpresso Experiment Kit pcb has been 
designed for the LPCXpresso LPC1769 board, but it is also possible to use the LPC1347 and 
LPC11U14 boards. 

7.18.1  Lab 17a: USB Device – HID 

The experiment will configure the LPC1769 as a USB Device with the HID (Human Interface Device) 
class. The HID driver is always present in Windows and does not require any additional device drivers. 

When using the USB Device interface a USB B to USB A cable is needed (not included in the kit). 
Connect it to the J9 connector on the experiment board and to the PC. 

This experiment is based on the code examples that are delivered with the LPCXpresso IDE. The code 
is structured very differently (none of the code from the previous exercises is used). You have to create 
a new workspace in LPCXpresso and then import the projects from Lab17a.zip. 

Run the USBHID project on the LPCXpresso and let the PC discover it. Run the HIDClient.exe 
program (found in the USBHID folder of Lab17a.zip) and select LPC17xx USB HID from the list. 

 

Figure 69 – HID Client Screenshot 

Press the buttons on the experiment board and note what happens in the PC application. Click the 
different output checkboxes or change the value in the text field. 

The reading/writing of values are done in these two functions in main.c: 

/* 

 *  Get HID Input Report -> InReport 

 */ 

void GetInReport (void) { 

  InReport = 0x00; 

  if ((LPC_GPIO0->FIOPIN & (1<<4)) == 0)   InReport |= 0x01; //up     pressed means 0 

  if ((LPC_GPIO0->FIOPIN & (1<<2)) == 0)   InReport |= 0x02; //left   pressed means 0 

  if ((LPC_GPIO1->FIOPIN & (1UL<<31)) == 0)InReport |= 0x04; //select pressed means 0 

  if ((LPC_GPIO0->FIOPIN & (1<<3)) == 0)   InReport |= 0x08; //right  pressed means 0 

  if ((LPC_GPIO2->FIOPIN & (1<<7)) == 0)   InReport |= 0x10; //down   pressed means 0 

} 

 

/* 

 *  Set HID Output Report <- OutReport 

 */ 

void SetOutReport (void) { 

  static unsigned long led_mask[] = { 1<<6, 1<<17, 1<<15, 1<<16, 

                                      1<<3, 1<<13, 1<<28, 1<<27 }; 

  int i; 

 

  for (i = 0; i < LED_NUM; i++) { 

    if (OutReport & (1<<i)) { 



LPCXpresso Experiment Kit - User’s Guide Page 127  

 

 

Copyright 2013 © Embedded Artists AB 

 

      if (i == 4 || i == 5) LPC_GPIO2->FIOPIN &= ~led_mask[i]; 

      else                  LPC_GPIO0->FIOPIN &= ~led_mask[i]; 

    } else { 

      if (i == 4 || i == 5) LPC_GPIO2->FIOPIN |= led_mask[i]; 

      else                  LPC_GPIO0->FIOPIN |= led_mask[i]; 

    } 

  } 

} 

 

Modify the program to use the 7-segment display to show the hexadecimal value from the PC 
application. Modify the program to read the state of the quadrature encoder to change the value sent to 
the PC instead of using buttons.  

7.18.2  Lab 17b: USB Device – Mouse HID 

This experiment uses the USB HID class but this time the USB device will act as a computer mouse. 
The buttons on the experiment board will control the mouse pointer on the PC. 

This experiment is based on the code examples that are delivered with the LPCXpresso IDE. The code 
is structured very differently (none of the code from the previous exercises is used). You have to create 
a new workspace in LPCXpresso and then import the projects from Lab17b.zip.  

When using the USB Device interface a USB B to USB A cable is needed (not included in the kit). 
Connect it to the J9 connector on the experiment board and to the PC. 

Compile and run the program. Your board should appear as a HID-compatible mouse on the PC when 
the driver installation has completed. 

Use the buttons on the experiment board to move the mouse pointer. The middle button (SW3) acts as 
a left-click on the mouse. 

As seen it is not possible to select text or to move the mouse pointer diagonally. This is because the 
following code in main_mouse.c only allows one button at a time. 

The reading/writing of values are done in these two functions in main_mouse.c: 

  if(i_JoystickState & JOYSTICK_UP) { 

    MouseInputReport.bY = -10; 

    MouseInputReport.bX = 0; 

    MouseInputReport.bmButtons = 0; 

  } 

  else if((i_JoystickState & JOYSTICK_DOWN)) { 

    MouseInputReport.bY = 10; 

    MouseInputReport.bX = 0; 

    MouseInputReport.bmButtons = 0; 

  } 

  else if((i_JoystickState & JOYSTICK_LEFT)) { 

    MouseInputReport.bX = -10; 

    MouseInputReport.bY = 0; 

    MouseInputReport.bmButtons = 0; 

  } 

  else if((i_JoystickState & JOYSTICK_RIGHT)) { 

    MouseInputReport.bX = 10; 

    MouseInputReport.bY = 0; 

    MouseInputReport.bmButtons = 0; 

  } 

  else if((i_JoystickState & JOYSTICK_CLICK)) { 

    MouseInputReport.bX = 0; 

    MouseInputReport.bY = 0; 

    MouseInputReport.bmButtons = 1; 

  } 

  else { 

    MouseInputReport.bX = 0; 

    MouseInputReport.bY = 0; 

    MouseInputReport.bmButtons = 0; 

  } 

 

Fix the code and verify that the mouse pointer can be moved diagonally and that text selection works. 



LPCXpresso Experiment Kit - User’s Guide Page 128  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.19  Extra: Work with USB Host 

In this experiment you will learn how to work with an USB host interface. This experiment requires the 
LPCXpresso LPC1769 board, which has an USB Host interface. 

7.19.1  Lab 18a: USB Host 

Using the USB Host interface of the LPC1769 it is possible to read/write from a USB Memory Stick. 
This has a wide range of uses, including 

 Providing files for a web server 

 Data logging 

 Storing of initialization data 

The data on the memory stick is persistent, allowing states and data to be kept between power cycles. 

This experiment is based on the USBHostLite project that is part of the software package distributed 
with the LPCXpresso IDE. It expects an msread.txt file (content not important) to be present in the 
root of the memory stick's file system. The file will be copied into (possibly overwriting) mswrite.txt. 
The memory stick should be formatted as FAT. 

Note that an external +5V supply is needed, either via J1 or J17. Also note that two jumpers shall be 
inserted in J11, pos 1-2 and 3-4. 

This experiment is based on the code examples that are delivered with the LPCXpresso IDE. The code 
is structured very differently (none of the code from the previous exercises is used). You have to create 
a new workspace in LPCXpresso and then import the projects from Lab18a.zip.  

Insert a USB memory stick in the J10 connector and then start the program. The program uses 
semihosting so all printouts will be available in the LPCXpresso IDE. If the memory stick is found and 
the file is copied the printouts should look like this: 

Initializing Host Stack 

Host Initialized 

Connect a Mass Storage device 

Mass Storage device connected 

Copying from MSREAD.TXT to MSWRITE.TXT... 

Copy completed 

 

 

If the memory stick was not inserted before the program started it will look like this: 

Initializing Host Stack 

Host Initialized 

Connect a Mass Storage device 

ERROR: In Host_EnumDev at Line 407 - rc = -1 

 

 

This is not very user friendly. Improve the implementation of main() to wait for the memory stick to be 
inserted, copy the file, wait for the memory stick to be removed and then start over. 



LPCXpresso Experiment Kit - User’s Guide Page 129  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.20  Extra: Work with Ethernet Interface 

In this experiment you will learn how to work with the Ethernet interface and TCP/IP. This experiment 
requires the LPCXpresso LPC1769 board, which has an Ethernet interface.  

7.20.1  Lab 19a: easyWeb Web Server 

This experiment will demonstrate a very basic web server that is a part of the software package 
distributed with the LPCXpresso IDE. The web server returns the same web page regardless of which 
URL is requested. For example http://192.168.5.200 returns the same page as 
http://192.168.5.200/test/a_page.html . 

This experiment is based on the code examples that are delivered with the LPCXpresso IDE. The code 
is structured very differently (none of the code from the previous exercises is used). You have to create 
a new workspace in LPCXpresso and then import the projects from Lab19a.zip.  

Connect an Ethernet cable between the J4 connector on the experiment board and a network 
hub/switch/router depending on the network you are connected to. 

The project needs a couple of small changes to work. Start by creating a unique Ethernet address 
(MAC address) by opening ethmac.h and modifying these lines: 

#define MYMAC_1              1          // our ethernet (MAC) address 

#define MYMAC_2              2          // (MUST be unique in LAN!) 

#define MYMAC_3              3 

#define MYMAC_4              4 

#define MYMAC_5              5 

#define MYMAC_6              8 

 

The address must be unique on the network. If you are doing these labs with other students/colleagues 
then you must all agree on which addresses to use to avoid name conflicts. 

After selecting an Ethernet address it is time to select a fixed IP address. This is set in tcpip.h like this: 

#define MYIP_1               192   // our internet protocol (IP) address 

#define MYIP_2               168 

#define MYIP_3               5 

#define MYIP_4               200 

 

This address also has to be unique within your network. 

Compile and run the code. To see if everything works, open a command prompt and run ping to see if 
your board responds (make sure to use the ip address you entered in tcpip.h): 

 

Figure 70 – PING Screenshot 

http://192.168.5.200/
http://192.168.5.200/test/a_page.html


LPCXpresso Experiment Kit - User’s Guide Page 130  

 

 

Copyright 2013 © Embedded Artists AB 

 

If you get replies as shown above everything is working. If not then go back to ethmac.h and tcpip.h 
and verify that the addresses you have selected are correct. 

Now open a web browser and enter your selected IP number in the address field. You should get a 
page similar to this. 

 

Figure 71 – Web Page Screenshot 

The page is continuously updated - page count is increasing and the colored bar is changing value. 
This is accomplished by having a static web page with a couple of fields that are updated before the 
page is sent to the browser. The static page is declared in webside.h: 

const unsigned char WebSide[] = { 

"<html>\r\n" 

"<head>\r\n" 

"<meta http-equiv=\"refresh\" content=\"1\">\r\n" 

"<title>easyWEB - dynamic Webside</title>\r\n" 

"</head>\r\n" 

"\r\n" 

... 

 

The dynamic content comes from the InsertDynamicValues() function in easyweb.c. It locates and 
replaces the markers in the WebSide[] data. 

Suggested changes: 

 Change colors on the page 

 Make the colored bar decrease instead of increase 

 Add a second bar and let the two bars represent the values on the two trimming 
potentiometers. 

 Read and present the current temperature 

 

7.20.2  Lab 19b: lwIP TCP/IP Stack, Web Server and FreeRTOS 

1) Go to FreeRTOS+IO and FreeRTOS+CLI demo2 

2) Download the projects, LPC1769_FreeRTOS_Plus_Featured_Demo_002.zip 

3) Create a new workspace and import the contents of the downloaded zip file 

http://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_IO/Demo_Applications/LPCXpresso_LPC1769/NXP_LPC1769_Demo_Description.shtml#Download_Link
http://interactive.freertos.org/attachments/token/xupqqaau9ixtslj/?name=LPC1769_FreeRTOS_Plus_Featured_Demo_002.zip


LPCXpresso Experiment Kit - User’s Guide Page 131  

 

 

Copyright 2013 © Embedded Artists AB 

 

4) Remove the call to vStartSPIInterfaceToSDCardTask() from main() in FreeRTOS-Plus-Demo-
2\Source\main.c. This is needed to prevent the demo from crashing as a result of a missing 
SD card. 

5) Modify the FreeRTOS-Plus-Demo-2\Source\FreeRTOSConfig.h to get unique addresses: 

/* MAC address configuration. */ 

#define configMAC_ADDR0 0x00 

#define configMAC_ADDR1 0x12 

#define configMAC_ADDR2 0x13 

#define configMAC_ADDR3 0x10 

#define configMAC_ADDR4 0x15 

#define configMAC_ADDR5 0x12 

 

/* IP address configuration. */ 

#define configIP_ADDR0  192 

#define configIP_ADDR1  168 

#define configIP_ADDR2  5 

#define configIP_ADDR3  201 

 

 

Run the ping test as described in <insert ref here> and then point the web browser to 
http://<your_selected_ip_number>. The page will look like this: 

 

Figure 72 – Task Statistics Screenshot 

The FreeRTOS allows multiple threads to run in (seemingly) parallel. The program has both a web 
server and a telnet server. The telnet server can be accessed by e.g. Putty on port 22. 



LPCXpresso Experiment Kit - User’s Guide Page 132  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Figure 73 – Telnet Server Screenshot 

Test the three available commands: help, task-stats and run-time-stats. 

 



LPCXpresso Experiment Kit - User’s Guide Page 133  

 

 

Copyright 2013 © Embedded Artists AB 

 

7.21  Differences between LPCXpresso LPC111x and LPC1114 in DIL28 

The experiments are based on the LPCXpresso LPC111x boards that can be based on the LPC1114 
or the LPC1115. For all practical purposes, these two chips are interchangeable. The LPC1115 has 
the double amount of FLASH (64kByte instead of 32kByte for the LPC1114). At the time of writing the 
LPCXpresso LPC1114 board has been discontinued in favor for the LPC1115 version, so the majority 
of users will likely work with the LPCXpresso LPC1115 board. 

One of the included components is the LPC1114FN28/102 chip, which comes in a DIP28 package. 
That is a package that can easily be used on a breadboard. Figure 74 below (from the LPC111x User’s 
manual) lists the differences.  

 

Figure 74 – LPC111x Variant Comparison 

There are some differences when working with the LPC1114FN28/102 chip. Memory-wise, the 
difference is small. The chip has half the amount of SRAM (4kByte) when compared to the 
LPC1115/1114 on an LPCXpresso board. The big difference is less available pins.  When working on 
the breadboard the solution is simply to switch which pins to use (since all are not used simultaneous), 
so no problem there. When having soldered all components to the PCB, the setup is more fixed. Most 
of the pins that are lacking on the DIP28 package have been routed to U7 (PCA9532), the I2C-GPIO 
expander. That way it is possible to access these signals (pins) via I2C instead. The experiments 
affected with pcb mounted components are the following: 

 8 LEDs, signals GPIO_9-LED-SSEL, GPIO_21-LED, GPIO_22-LED and GPIO_23-LED are 
not connected to the LPC1114FN28. GPIO_9-LED-SSEL is however connected to U7 
(PCA9532). 



LPCXpresso Experiment Kit - User’s Guide Page 134  

 

 

Copyright 2013 © Embedded Artists AB 

 

 5 push-buttons, signals GPIO_17-KEY, GPIO_18-KEY and GPIO_35-KEY are only 
connected to U7 (PCA9532). The signals can be manually bridged to any other free pin in the 
specific experiment. 

 Buzzer, signal GPIO_7-BUZZ is not connected at all. The signal can be manually bridged to 
any other free pin in the specific experiment. 

 RGB-LED, signal GPIO_30-PWM is only connected to U7 (PCA9532). This is the signal 
controlling the green LED. Note that signals GPIO_28-PWM and GPIO_29-PWM are both 
connected to the LPC1114FN28 and U7. This is because U7 has built-in functionality for 
PWM control so there is a possibility to experiment with this specifically. 

 Quadrature encoder, signals GPIO_38-QA and GPIO_39-QB are only connected to U7 
(PCA9532). The signals can be manually bridged to any other free pin in the specific 
experiment. 

 

 

 



LPCXpresso Experiment Kit - User’s Guide Page 135  

 

 

Copyright 2013 © Embedded Artists AB 

 

8  Projects 
This chapter contains a list of project ideas that build on the knowledge gained from the experiments in 
the previous chapters. The projects involve a bigger programming effort than before and are real-world 
in the sense that part of a real product application can very likely contain one of the project ideas. The 
idea is to deepen your understanding of embedded systems and enhance your programming skills. 

The projects are not described in detail like the experiments. Instead the descriptions are quite short 
and are mainly supposed to give you some ideas and get you started. Solve the details on your own – 
that is what programming is all about anyways! Alternatively create your own project based on these 
ideas. 

8.1  Interface a Color Sensor 

Select a color sensor, for example one of these: 

- http://www.sparkfun.com/products/10701 (with a digital interface) 

- http://www.sparkfun.com/products/10904 (with an analog interface) 

Create the hardware and software interface to the sensor. Output can be on the console, the RGB-
LED or on a display. 

8.2  Interface a Real-time Clock (RTC) 

Select an RTC chip and interface. Most commonly used interfaces to these chips are I2C or SPI. For 
example NXP PCF8523 with I2C interface or PCF2123 with SPI interface. 

Create an application that displays the real-time on a display or via the console. It shall be possible to 
set the current time. If a display is used, create a small menu system controlled by the joystick push-
buttons or the rotary switch. 

Implement alarm functionality. 

Implement low-power operation where the processor sleep and only wake up once a second to update 
the time, or even once a minute. The processor shall also wake up on alarms. 

Several enhancements are possible to this project: 

- Implement automatic adjustment of the clock once a day. 

- Implement automatic adjustment for summer and winter time. 

- If the RTC chip does not support leap year add support for leap year compensation.  

8.3  Interface a GPS Module 

Interface a GPS module. Most modules have a UART interface and communicate with the standard 
NMEA protocol (use google to find more information about this protocol specification). 

A simpler project just output the results from the GPS module on a display with X/Y-coordinates. A 
more advanced project visualizes the location on a graphical display. 

8.4  Interface an SD/MMC Memory Card 

Interface an sd/mmc memory card via the spi bus. There are application notes from NXP that gives a 
good start. Add FAT-file system handling “on top” of the low-level interface drivers. 

8.5  Interface an Accelerometer and Gyro 

Interface an accelerometer (2- or 3-axis) or a gyro. There are several chips with associated breakout 
boards for simpler interfacing on the market. Select a chip with digital interface (I2C or SPI). 



LPCXpresso Experiment Kit - User’s Guide Page 136  

 

 

Copyright 2013 © Embedded Artists AB 

 

8.6  Control a LED Matrix 

Interface an 8x8 LED matrix. There are both single color and RGB-LED matrixes. Create an 
application that can control each individual LED in the matrix. 

To control the matrix it is suggested to have a timer interrupt that updates the LED matrix in a 
multiplexed way, i.e., one columns or one row at a time. The frequency must typically be at least 100 
Hz in order to avoid flickering. The timer interrupt function can get information about which LEDs to 
turn on/off from a 64 bit array, i.e., a vector of 8 bytes. In case of an RGB-matrix, three such bit arrays 
are needed, one for each color. 

As a start, create an application that updates the 64 LEDs so that messages can be streamed. A 
simple solution is to just store the bit pattern of the message. A more advanced solution can store the 
messages as ASCII strings. In the latter case, a bit map defining all characters must also be defined. 

For more advanced, and fun, use, create a game for the LED matrix. See for example these projects 
for some ideas:  

- http://www.evilmadscientist.com/2008/meggy-jr-rgb/ 

- http://hackaday.com/2010/02/19/update-most-interesting-game-in-64-pixels/ 

- http://interactive-matter.eu/blog/2010/05/08/blinken-buttons-for-beginners-a-smt-beginners-kit/ 

8.7  Create a Game with Display + Accelerometer or Gyro 

Create a game with a graphical display and an accelerometer or gyro. Navigating a rolling ball in a 
labyrinth or recreate the classical snake game, for example. 

8.8  Create General Menu System for a Display 

Create a general menu system for small character based LED, for example a 2x20 character display. 
Use the joystick-buttons or the rotary switch as user input. 

To get some ideas about which functions that are needed in a menu system have a look at older (non 
smart phone) cell phones. These phones had small displays and few buttons. There you can find many 
typical functions that are needed. 

Character based LCDs typically have an 8-bit parallel interface. Many of them also have a 4-bit 
interface mode (to save interface pins). Write code that works for both modes. 

Alternatively us e a graphical display for more flexibility and nicer looking interfaces. 

8.9  Retrieve Information from Web Servers 

A web browser used the HTTP communication protocol (on top of TCP/IP) to retrieve information from 
web servers. More specifically, it’s the GET request that is used. 

Create an application that connects to a web server (typically port 80) and send a HTTP GET request 
and displays the information in a suitable way, for example on the console or a display. When the data 
is received it must be interpreted in order to extract the usable information. 

A typical setup can be a system with a web server that resents the analog values of the two analog 
inputs on a HTML-page. If another embedded system shall also retrieve this information, it must 
interpret the HTML-data and extract the correct information, i.e., the analog values. 

8.10  USB Mouse Emulation 

Create a USB device application that emulates a USB mouse. You need to implement a USB HID 
device. HID stands for Human Interface Device, which is exactly what a mouse is. Study USB-related 
documentation to find out more about this. 

The joystick switches can be used to move the mouse position, and in the end move the cursor pointer 
on a PC screen.  



LPCXpresso Experiment Kit - User’s Guide Page 137  

 

 

Copyright 2013 © Embedded Artists AB 

 

8.11  Registry in E2PROM 

Create a so called registry, which is a non-volatile storage that can store values connected to so called 
keys. Non-volatile storage is easily created by using the E2PROM, which is accessible over the I2C-
bus. The keys can be short strings, for example strings with lengths between 1 and 16. To make it 
simple, a value connected to a key is always a 32-bit integer. 

If you want to make it more advanced, a value can also be a string. 

Typical operations for a registry are: 

 Create entry for a new key 

 Delete key 

 Get value of key 

 Update key 

 List all keys 

A registry is always usable to have when creating real-world applications. There is often a need to 
store settings from a user. Also in the case of Internet communication the following settings must be 
stored in the system: 

 IP address 

 Subnet mask 

 Default gateway 

 If an Ethernet interface is present, the MAC address is also needed 

8.12  Real-Time Dynamic Data with JAVA Applet 

This is a project that requires a TCP/IP stack, web server and RTOS. 

By using SSI and CGI/EGI technologies (in a web server) you can create dynamic information in a web 
server. However, the information is created at the download moment. Anything that happens after that 
point in time will not be reflected on the client side. True real-time data visualization is hence not 
possible with SSI or CGI/EGI. 

To create true real-time data on the client side (= the web browser) a JAVA applet must be used. The 
JAVA applet connects back to the embedded system, opens a communication channel, and then 
received real-time data. The communication channel can be either a TCP or a UDP connection. 

There must of course be a TCP/UDP server on the system that produces the real-time data. It is this 
server that the JAVA applet connects to. Create such a system! 

Let the server produce a stream of data, for example a sinus-valued signal stream. Alternatively, the 
server can stream the values from both analog inputs of the board. Let the JAVA applet display this 
data stream in a suitable way. 

8.13  Multiplayer Game via RF-module 

Create a multiplayer game with the help of RF-modules. For example ping-pong on a graphical display. 

8.14  Home Alarm System 

Create a home alarm system with remove sensors that communicate wirelessly with a central. It can 
even communicate with a GSM/3G phone modem and make a call/send an SMS in case of an alarm.  



LPCXpresso Experiment Kit - User’s Guide Page 138  

 

 

Copyright 2013 © Embedded Artists AB 

 

8.15  Polyphonic Audio Generation 

Create an audio output with speaker amplifier. A low-pass filtered PWM-output can be used to 
generate the audio waveform. Implement polyphonic tone generation and play a melody with multiple 
tones. 

8.16  Audio Processing 

Create an audio interface with both input and output. Create audio effects, for example an echo 
chamber. Alternatively create a system for voice recording and playback. 

8.17  Home Automation 

Create a system for home automation. There are many different systems that can be created for 
handling ventilation, heating, blower watering, lighting, etc. It can be something very small or a big 
system with remote nodes communication wirelessly and presenting information on the Internet. 

8.18  Control a Robot 

Find a suitable mechanical platform and let the LPC111x control the robot hardware. 

8.19  RS-485 Network 

Create an RS-485 network and define a protocol for reliable communication, for example a token 
passing protocol. 

8.20  Interface an FPGA/CPLD Chip 

Create a project that interface a programmable hardware chip (FPGA or CPLD). There are many small 
breakout boards ion the market with these kinds of chips. Implement some kind of hardware in the 
programmable chip and then let the microcontroller control this functionality. It can be like an additional 
peripheral to the microcontroller. 

8.21  Analog Electronic Experiments 

This is more than just one individual project idea. The experiments and kit content address digital 
electronics. There is a whole world of analog electronic also, including the interface between the 
analog world and the digital world. Create own experiments to learn areas of interest, for example: 

 How to use a comparator to interface an analog signal to a digital input. 

 How to adjust the range of an analog signal before feeding it to an ADC (Analog to Digital 
Converter), both gain and offset. 

 How to apply low-pass filtering before sampling an analog signal. What are the theoretical 
requirements and practical implications? 

 How to create an analog signal via low-pass filtering a PWM signal. 

 How to create a capacitive touch sensor. 

 How to use an opto-coupler to galvanically isolate a digital signal. 

 

 



LPCXpresso Experiment Kit - User’s Guide Page 139  

 

 

Copyright 2013 © Embedded Artists AB 

 

9  LPCXpresso IDE – How to get Started 
This chapter gives a quick presentation of how to get started with the LPCXpresso IDE, which is the 
integrated program development environment that was created for the LPCXpresso board family. 
There are also more extensive and detailed presentations and descriptions on the LPCXpresso 
website [5]. 

Before starting, make sure that the latest version of the LPCXpresso IDE is installed. See [5], 
http://www.nxp.com/lpcxpresso/ for details where to download and how to install. 

9.1  Importing Projects 

A package of projects has been created as a base for supporting the experiments. It makes it easier to 
get up-and-running quicker with the first set of experiments. Download this package from Embedded 
Artists support page after registering the product. It is a zip-file that contains all project files and is a 
simple way to distribute complete Eclipse projects. 

This section describes how to import the package of projects into the Eclipse workspace. Several 
projects will be imported simultaneously. 

Start the LPCXpresso IDE and select a new (and empty) workspace directory. 

Select the Import and Export tab in the Quickstart menu and then Import archived projects (zip), see 
figure below. 

 

Figure 75 – LPCXpresso IDE Import Archived Project 

Next, browse and select the downloaded zip file containing the archived projects. Make sure all sub-
projects are selected to be imported, see figure below (note that the screen shot below is generic and 
the project names will be different). 

1) Select Import and Export 

2) Select Import archived projects (zip) 

http://www.nxp.com/lpcxpresso/


LPCXpresso Experiment Kit - User’s Guide Page 140  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Figure 76 – LPCXpresso IDE Import Archived Project Window 

All projects are now imported. 

 

1) Browse and select 
archived project file 

2) Select all sub-
projects in list 

3) Import projects 



LPCXpresso Experiment Kit - User’s Guide Page 141  

 

 

Copyright 2013 © Embedded Artists AB 

 

9.2  Working with a Project and Compiling 

Click (to select) the project to work with. Note that there are several projects in the workspace.  

Browse and edit the project files. These are typically found under the src sub-directly. The main 
window to the right in the LPCXpresso window is a source code editor. 

Build and clean the project from the Quickstart menu (Start here), see picture below. When compiling, 
the console window in the lower (right) corner of the LPCXpresso Window will give information about 
the compile and link process. 

When the project compiles and links without any errors it is possible to move to the next step (next 
section) and download the code to the LPC111x - and begin the debug session. 

 

Figure 77 – LPCXpresso IDE Build Project 

 

1) Click (to select) main project 

3) Build/clean project 

2) Browse and edit project files 

Console window 

Source code 
Editor window 



LPCXpresso Experiment Kit - User’s Guide Page 142  

 

 

Copyright 2013 © Embedded Artists AB 

 

9.3  Debugging a Project and Downloading 

When the project compiles and links without any errors it is time to start debugging – to download the 
code to the LPC111x and start executing! 

Before starting to debug, make sure the LPCXpresso board is connected (via USB) to the PC. The 
code is downloaded to the board via this cable. The LPCXpresso board consists of two parts, one is 
the LPC111x processor and the other is the LPC-Link™ side, which is an embedded debug interface. 

Click (to select) the project to work with. Click on debug in the Quickstart menu (Start here), see 
picture below. 

 

Figure 78 – LPCXpresso IDE Debug Project 

In case flashing fails, an error message like below will be displayed. This is an indication that the 
debugger could not connect to the LPC111x. The most common reason is that the microcontroller is in 
a low-power mode where the debug connection is disabled. Make sure the microcontroller is in 
ISP/bootload mode and try again. This is accomplished by pulling pin PIO0_1 low (via 100-1000 ohm 
resistor to ground). 

 

Figure 79 – LPCXpresso IDE Program Failing to Flash 

1) Click (to select) main project 

 

2) Debug project 



LPCXpresso Experiment Kit - User’s Guide Page 143  

 

 

Copyright 2013 © Embedded Artists AB 

 

When the code has been downloaded execution will stop at the first line in the main function. Press F8 
or the green arrow button to resume/start execution. 

 

 

 

 

Figure 80 – LPCXpresso IDE Run Button 

It is possible to manually stop execution by pressing the Pause button. After that it is possible to restart 
the execution by pressing the Start button (or F8). Alternatively the target can be reset by pressing 
Reset button and the system return to the state just after program download, i.e., at the first line in the 
main function. 

The debug session is ended by pressing the Stop button. The LPCXpresso IDE then returns to edit 
mode. 

When the system has been stopped the call stack window indicates where the execution has stopped 
and the call path to get to that point. 

 

Figure 81 – LPCXpresso IDE Stop at First Line in main() 

Stop at first line in main()-function 

Call stack, which indicates the call 
structure to get to the point where the 
program is currently stopped. 

Currently stopped at line #23 in main() 

Start/Resume 
Execution (F8) 

Pause 
Execution 

Stop debug 
session 

Reset 
Target 



LPCXpresso Experiment Kit - User’s Guide Page 144  

 

 

Copyright 2013 © Embedded Artists AB 

 

It is possible to set breakpoints by double clicking in the left margin. A small dot marks that a 
breakpoint has been set to a specific source code line. In Figure 82 below, the breakpoint has been set 
to line #34 in function main(). A breakpoint is removed by double-clicking on the dot. 

 

Figure 82 – LPCXpresso IDE Set Breakpoint 

Pressing the Start button (or F8) will start execution. Hitting a breakpoint will stop execution. Figure 83 
below illustrates what the call stack looks like after stopping at line #34 in main().  

Double-click in left margin to set breakpoint. 
Double-click again to remove. 



LPCXpresso Experiment Kit - User’s Guide Page 145  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Figure 83 – LPCXpresso IDE Run to Breakpoint 

Figure 84 below illustrates what the call stack can look like when the call depth is a little deeper, 6 
levels in this case. It also illustrates that it is possible to hover the mouse cursor over a variable. A 
variable window will then pop up showing the current variable value. 

 

Call stack, which indicates the call 
structure to get to the point where the 
program is currently stopped. 

Currently stopped at line #34 in main() 



LPCXpresso Experiment Kit - User’s Guide Page 146  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Figure 84 – LPCXpresso IDE Variable View 

 

9.3.1  Downloading Just Code 

This section describes how to download an application to the LPCXpresso board, i.e., to the LPC111x, 
without also starting a debug session. 

Click on the "Program Flash" icon from the tool bar, see picture below. The icon can be at different 
places depending on window size. 

Call stack, which indicates the call 
structure to get to the point where the 
program is currently stopped. 

Currently stopped at line #34 in main() 

Variable view 
Hover cursor over variable and a 
variable window will pop up, 
showing the current value. 



LPCXpresso Experiment Kit - User’s Guide Page 147  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Figure 85 – LPCXpresso IDE Program Flash Icon 

The next step is to select which processor to download to. Select LPC1115 or LPC1114 from the list 
that is presented. Then press OK button. Note that this step is sometimes not needed because the 
LPCXpresso IDE can itself detect which processor it is connected to. 

The next step is to browse to the file to download. Press the “Browse” button. 

 

Program Flash Icon 



LPCXpresso Experiment Kit - User’s Guide Page 148  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Figure 86 – LPCXpresso IDE Program Flash Window 

Browse to the projects top directory and then “Debug”. In this subfolder there is either a file ending with 
*.axf or *.bin. Select one of these files. Press the “Open” button. 

 

 

Figure 87 – Browse to File to Download 

 

2) Find project 
top directory 

3) Find “Debug” 
subdirectory 

4) Select either *.axf 
or *.bin file 

1) Find 
workspace and 
all sample apps. 



LPCXpresso Experiment Kit - User’s Guide Page 149  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Figure 88 – LPCXpresso IDE Program Flashing in Progress 

In case flashing fails, an error message like below will be displayed. This is an indication that the 
debugger could not connect to the LPC111x. The most common reason is that the microcontroller is in 
a low-power mode where the debug connection is disabled. Make sure the microcontroller is in 
ISP/bootload mode and try again. This is accomplished by pulling pin PIO0_1 low (via 100-1000 ohm 
resistor to ground). 

 

Figure 89 – LPCXpresso IDE Program Failing to Flash 



LPCXpresso Experiment Kit - User’s Guide Page 150  

 

 

Copyright 2013 © Embedded Artists AB 

 

There is an alternative way of initiating the program download process. From the workspace, right click 
on the *.axf or *.bin file (found under the “Debug” subdirectory). Then select “Binary Utility” and 
“Program Flash”. 

 

Figure 90 – LPCXpresso IDE Binary Utility 

 

9.4  Create own Projects by Copy Existing Project 

The simplest way to create a new project is to copy an existing project. Start by right-clicking on a 
suitable existing project to start from. Select Copy, as illustrated in Figure 91 below. Then right-click on 
an empty space in the Project Explorer window and select Paste, as illustrated in Figure 92 below.  
Finally give the new project a suitable name, as illustrated in Figure 93 below. 

  

1) Right click on 
*.axf or *.bin file 

2) Select “Binary Utility” 

3) Select “Program Flash” 



LPCXpresso Experiment Kit - User’s Guide Page 151  

 

 

Copyright 2013 © Embedded Artists AB 

 

 

Figure 91 – Copy Existing Project 

 

Figure 92 – Paste Project 

 

Figure 93 – Copy Project and Rename 

 

9.5  Common Problems 

In this section a number of common problems are listed. 

1) Right-click on project to 
copy and select “Copy”. 

2) Right-click on empty 
space in Project Explorer 
and select “Paste”. 

3) Give a name for 
the new project. 

Note, no spaces 
in project name. 
That can give 
problems later on 
when compiling 
and linking. 



LPCXpresso Experiment Kit - User’s Guide Page 152  

 

 

Copyright 2013 © Embedded Artists AB 

 

9.5.1  Error message: Failed on chip setup 

 

Figure 94 – LPCXpresso IDE Error: Failed on chip setup 

In the console window more detailed information is given. It can for example look like this: 

Invalid LPC1114/301 Part ID: 0x00050080 
Known LPC1114/301 ID(s): 0x0444102B, 0x2540102B 
03: Failed on chip setup: Ec(01). Invalid, mismatched, or unknown part 

The solution is to change the chip type to the correct version. Click on the project main folder on in the 
Project Explorer window to the left and press Alt+Enter. Alternatively left click on the project folder and 
select Properties (at the end of the list). 

Select the C/C++ Build menu and then the MCU setting menu. A list of available chips is presented. 
Select the correct chip in this list. Note that it is possible to select the chips that are listed in red. There 
are however restrictions for these chips. Typically in how big the code size can be. 

 



LPCXpresso Experiment Kit - User’s Guide Page 153  

 

 

Copyright 2013 © Embedded Artists AB 

 

10  Further Information 
The LPC111x microcontroller is a complex circuit and there exist a number of other documents with a 
lot more information. The following documents are recommended as a complement to this document. 

[1] NXP LPC111x Information (Datasheet, User’s Manual and Errata) 
http://ics.nxp.com/products/lpc1000/lpc1100/lpc11cxx/ 

[2] ARM Processor Documentation 
Documentation from ARM can be found at: http://infocenter.arm.com/. 

[3] Information on different ARM Architectures 
http://www.arm.com/products/processors/technologies/ 
instruction-set-architectures.php 

[4] ARMv7-M Architecture Reference Manual. Document identity: DDI 0403D 
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0403c/index.html 

[5] ARMv6-M Architecture Reference Manual. Document identity: DDI 0419B 
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419b/index.html 

[6] Cortex-M0 Technical Reference Manual. Revision: r0p0 
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0432c/index.html 

[7] LPCXpresso IDE: NXP's low-cost development platform for LPC families, which is an Eclipse-
based IDE. 
http://ics.nxp.com/lpcxpresso/ 

[8] LPC1000 Yahoo Group. A discussion forum dedicated entirely to the NXP LPC1xxx series of 
microcontrollers. 
http://tech.groups.yahoo.com/group/lpc1000/ 

[9] LPC2000 Yahoo Group. A discussion forum dedicated entirely to the NXP LPC2xxx series of 
microcontrollers. This group might be more active than the LPC1000 group. 
http://tech.groups.yahoo.com/group/lpc2000/ 

[10] LPCware, NXP's community for developers 
http://www.lpcware.com/ 

Note that there can be newer versions of the documents than the ones linked to here. Always check for 
the latest information/version. 

http://infocenter.arm.com/
http://www.arm.com/products/processors/technologies/instruction-set-architectures.php
http://www.arm.com/products/processors/technologies/instruction-set-architectures.php

